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Abstract
Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve
similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e.g.,
by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose
a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-
Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a
user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outper-
form 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and
confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction
is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D
transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster defini-
tion and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data
points as well as four types of surface renderings. A second user study evaluates the suitability of these visual en-
codings. Several examples illustrate the framework’s applicability for both visual exploration of multidimensional
abstract (non-spatial) data as well as the feature space of multi-variate spatial data.

1. Introduction

Document and image collections, time series, or multiple
scalar fields related to a single phenomenon are just a few
examples of high-dimensional data. Creating visual repre-
sentations that provide insight into the global behavior of
such data is challenging. Typical questions are: Are there
well-defined groups of similar objects? How are different
groups related? What about instances within a group? Which
data features determine the groupings? Seeking answers to
those questions requires intuitive visual representations and
effective user interaction. Multidimensional projection tech-
niques offer a unifying framework in this scenario, by map-
ping data to a low-dimensional visual space suitable for user
interaction, i.e., 2D or 3D. While 2D maps afford easy in-
teraction, 3D projections decrease information loss allowing
for better group discrimination. However, interacting in 3D
in everyday applications is more difficult.

In this paper, we introduce a framework for interactive
visual exploration of multidimensional data using 3D pro-
jections. A 3D projection obtained by generalizing the Least
Square Projection technique (LSP) [PNML08] from a 2D
to a 3D scheme builds the core of our framework. It is pre-
sented in Section 3. We investigate its effectiveness using
quantitative measures and a user study. For quantitative eval-
uation we apply the similarity metrics of neighborhood hits
and neighborhood preservations, which confirm the intuition
that 3D projections outperform 2D in terms of precision, as
discussed in Section 3. The user study compares the suitabil-
ity of 2D and 3D projections to perform analysis tasks, see
Section 4. We found that better separation in 3D projections
allowed for a more precise analysis result.

We also address the problem of interacting with 3D pro-
jections, when depth perception becomes an issue. We com-
pare standard 3D scatter plots with color-coded clustering
results to visualizations that use cluster hulls and embedding
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surfaces.We consider several cluster enclosing surfaces: a
convex hull surface, a surface isodistant to the cluster points,
a non-convex hull computed from that surface, and a surface
isodistant to the non-convex hull, see Section 5. Again, we
conducted a user study to compare the effectiveness of these
alternative strategies, as detailed in Section 6.

Finally, we describe how our framework is implemented
into a publicly available system that supports a range of in-
teraction mechanisms, allowing for predefined optimal 2D
views, coordinated 2D and 3D views using a brushing-and-
linking technique, hierarchical cluster exploration, and clus-
ter modifications, see Section 7. Also in Section 7 we illus-
trate how this approach is applicable to visual exploration of
real-world data, considering both multidimensional abstract
(non-spatial) data and the multidimensional feature space of
multi-variate spatial data, following the ideas presented by
Linsen et al. [LLRR08, RLL08].

Our main contributions can be summarized as follows:

• A framework for interactive visual exploration of multidi-
mensional data with 3D projections, based on generaliz-
ing LSP to project into 3D visual spaces.

• A comparative study of 2D vs. 3D projections.
• Deploying multiple surface representations for 3D clus-

ter visualization and user interaction, and comparing them
through a user study.

• Implementation of the framework in a dataflow system
and illustration of its applicability to visual exploration
of abstract and spatial data.

2. Related Work

2.1. Projection-based Information Visualization

Classical Information Visualization relies heavily on visual
representations embedded in 2D space. Multiple data dimen-
sions may be anchored on 2D axes layouts, arranged either in
parallel [ID90] or radially [Kan00]. Multidimensional Scal-
ing (MDS) approaches, also known as multidimensional
projections, also derive 2D layouts, but establish no direct
association between the original data dimensions and 2D
axes. A set of points S = {p1, . . . , pn} in R

m is mapped
into a space R

d , d ≤ m based on some criterion, e.g., at-
tempting to preserve the original neighborhood (similarity)
relationships. The projected points afford visual representa-
tions that reveal groups of similar/dissimilar elements, such
as point clouds, 3D surfaces or graphs. Several classical and
novel techniques handle diverse high-dimensional data, e.g.,
Sammon’s Mapping [Sam69], FastMap [FL95], the Nearest-
Neighbor Projection (NNP) [TMN03] and the Least Square
Projection (LSP) [PNML08].

LSP has been conceived to handle large data sources char-
acterized by sparse data distributions in high-dimensional
spaces. The projection process comprises two steps. First,
an MDS method is employed to project a number of ‘control

points’ into the low-dimensional space R
d . Based on these

projected points and on neighborhood relationships among
the m-dimensional data points, a linear system is built and
then solved to obtain the projected coordinates of the re-
maining points.

The control points comprise a sample of S, carefully cho-
sen to reflect its distribution in R

m. The data points are clus-
tered and the cluster medoids chosen as the control points.
The clusters also define a neighborhood relationship, i.e., a
list of neighboring points Vi ⊂ S for each point pi ∈ S. A
point pi is placed in the convex hull of Vi by generating a
final layout based on local relations in R

m. For each cluster,
a nearest neighbor search of its medoid defines its k near-
est clusters. When the nearest neighbors of pi are sought,
only the point’s own cluster and its nearest clusters are ex-
amined, an approximation that yields good results at a rea-
sonable cost.

An advantage of LSP (and other multidimensional pro-
jections) is that dimensionality of the projected space is just
an input parameter. Therefore, mappings to 2D or 3D visual
spaces are equally possible. Nonetheless, since the standard
display is a ‘point cloud’, the lack of a more compact ge-
ometry tends to impair user orientation and interaction in
3D. Unlike Scientific Visualization, Information Visualiza-
tion solutions in general seem to favor 2D interaction over
3D. Some exceptions are briefly reviewed in the following.

2.2. Information Visualization in 3D

A few classical Information Visualization techniques have
been extended to create data representations embedded in
3D. Viz3D [AdO04], for example, extends RadViz by adding
a third dimension represented by an axis orthogonal to the
radial axes – the added spatial dimension improves group
differentiation. In projection pursuit and grand tours the goal
is to select and display a sequence of interesting 2D pro-
jections of pairs of data attributes. A 3D projection pur-
suit [Nas95] and a 3D Grand Tour [Yan99] have been intro-
duced that generate cluster-guided 3D data projections and
render the resulting visualizations in a CAVE virtual envi-
ronment. Scatterdice [EDF08] is a system that employs 3D
animated transitions for user navigation in scatterplot matri-
ces depicting multidimensional data.

Additionally, several contributions on the problem of clus-
tering high-dimensional data rely on visual representations,
either in 2D or 3D, to assist or improve clustering de-
cisions [HKW99]. Likewise, visualizing high-dimensional
data sometimes relies on clustering the data prior to visual-
ization [BDY03]. Nonetheless, pre-clustering has many sub-
tleties in this scenario and data objects may not be easily
associated with unique clusters.

Multidimensional projections to 3D spaces offer an in-
teresting alternative to creating 3D ‘general-purpose’ repre-
sentations of abstract high-dimensional data. They favor the
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perception of object similarity both across and within groups
and also support visual identification of groups of highly cor-
related objects and user focusing on groups of interest. Fur-
thermore, intuition is that projections on 3D space are likely
to improve user perception of data groups, as compared to
2D. Since every dimension ‘lost’ in the projection process
contributes to mixing unrelated objects, the added visual di-
mension should improve precision and enhance exploration
capabilities.

Sprenger et al. [SBG00] advocate enclosing surfaces as
a strategy to break down visual complexity when visualiz-
ing multidimensional data. Our approach is, in some aspects,
akin to their H-BLOB hierarchical visual clustering. They
employ a spring-embedding strategy to place multidimen-
sional objects in a 3D visual space, creating a mass-spring
graph representation of the data with spring stiffness reflect-
ing similarity measurements. The H-BLOB algorithm com-
prises two stages: computing a cluster hierarchy from the
graph with an algorithm based on edge collapsing, and then
visualizing resulting clusters with nested implicit surfaces.
A drawback of their approach is that the clustering based
on graphs does not scale well. Also, the derived hierarchical
cluster tree is static. The surface renderings employed are
similar to our enclosing surfaces isodistant to cluster points,
which we compare against other alternatives.

Tory et al. [TKAM06] investigated when 2D views, 3D
views, or their combination are most effective. They em-
ployed several scenarios, but it is hard to draw conclusions
from their results for separability in projected cluster visual-
izations. Consequently, we decided to perform our own ex-
periments, as described below.

3. 3D Least Square Projection and Quantitative
Evaluation

The original LSP has been successfully applied to various
types of multidimensional data, including document and im-
age collections [PNML08,EN∗09]. Exploration is conducted
on a 2D display by locating, selecting and examining visi-
ble groups. Despite its effectiveness, larger data sets incur
in severe visual clutter, causing different groups to mix and
impairing identification of subgroups.

The technique as proposed originally solves a linear sys-
tem for each coordinate of the projected space. Extension
to 3D (or any higher-dimensional space) is trivial as long
as one can obtain the 3D coordinates of the control points.
Choosing the control points and solving the resulting sys-
tems is analogous to the 2D case, only an additional sys-
tem must be solved for the third coordinate. We modified the
original algorithm to generate 3D projections as follows: A
k-means clustering is applied over the vector space, the clus-
ter centroids (or medoids) are chosen as control points and
the cluster organization is discarded. The 3D positions of the
control points are obtained with the Force Scheme [TMN03]

extended to handle 3D coordinates. Neighborhoods for each
control point are defined with a k-nearest neighbor search.
Details relative to each of these steps may be found in the
original LSP paper [PNML08], as the 3D implementation
handles them similarly.

Projecting in 3D improves both neighborhood preserva-
tion and identification of highly related data points when
compared to 2D. We consider the case of visualizing text
collections, a typical example of abstract high-dimensional
data. Visualization usually requires obtaining a vector space
representation of the collection, a process that requires stop-
word elimination, stemming (reducing words to their radi-
cals), and term counting and weighting.

We consider initially a collection of 2,841 scientific pa-
pers (preserving title, abstract, authors, and affiliations) in 8
areas of knowledge, each represented by a different number
of documents. The areas are: case-based reasoning, induc-
tive logic programming, information retrieval, sonification,
bibliographic coupling, co-citation analysis, milgrams, and
information visualization. The latter has been extracted from
the data made available for the IEEE InfoVis 2004 contest
(10 years of InfoVis). The remaining articles were obtained
from internet repositories and library searches. After prepro-
cessing, 1,269 terms define the resulting vector space, doc-
ument similarity is estimated with the cosine measure over
the vector representation.

We compared 2D and 3D LSP visual maps of this collec-
tion employing two quality metrics known as neighborhood
hit and neighborhood preservation [PNML08, PM08]. Both
metrics consider the capability of a projection to preserve the
data neighborhoods found in the original space, considering
each data point. Neighborhood hit computes the percentage
of a point’s neighbors that have been human-assigned to its
own class and averages the values. The neighborhood preser-
vation metric computes the percentage of a point’s neigh-
bors, in the projected space, that belong to the same neigh-
borhood in the original space, and averages the values. Re-
sults are shown in Figure 1: the blue curves confirm that
precision is superior in the 3D version for any number of
neighbors considered.

Although, as expected, the 3D projections do improve
group separation as compared to 2D, interaction becomes
critical, as discussed in Section 5. In the following we de-
scribe an empirical user study to evaluate the usability of 3D
vs. 2D projections obtained with LSP.

4. User Study Evaluation of 3D LSP

The user study involved 12 participants with different back-
ground including visualization experts and non-experts, but
all with significant experience in working with computers.
They got a brief training about the system and, afterwards,
were asked to answer six questions for 2D and 3D LSP pro-
jections. All participants answered all the six questions for
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(a) Neighborhood hit metric for 2D and 3D LSP.

(b) Neighborhood preservation metric for 2D and 3D LSP.

Figure 1: Increased precision of 3D LSP as compared to
2D LSP, measured by Neighborhood Hit and Neighborhood
Preservation, for a corpus of scientific papers.

both the 2D and 3D system. A document data set with 681
objects and 2,993 dimensions was used. The data set was
clustered before being projected and the clusters were color-
coded as shown in Figure 6. Two hypotheses were formu-
lated: Hypothesis 1 assumes that the 2D view is optimal and
that users would fail to find that optimal view in the interac-
tive 3D system and, thus, would deliver incorrect answers.
Perceptional issues of the 3D views when looked at with a
2D monitor may enhance this effect. Hypothesis 2 is based
on the fact that the 3D projection allows for better separa-
tion and assumes that the users would find proper views to
use this advantage and answer the questions more correctly.

The following tasks were asked: 1) count the clusters; 2)
order the clusters by their density; 3) list all (pairwise) over-
laps of clusters; 4) detect an object within a cluster (labels
are shown at mouse-over events); 5) find closest cluster to
a specific point (excluding the point’s own cluster); and 6)
repeat Task 5 with a different point. For each task the time
has been recorded by the examiner and the participants had
to state their confidence about the conducted tasks using a
Likert scale (1 to 5). Moreover, we asked all participants
whether they preferred the 2D or the 3D system.

We first computed the correctness of the given answers.
For the tasks that required users to list clusters, we counted
the percentage of correct answers. Our findings were that
the correctness averaged over all participants and all ques-

(a) Correctness

(b) Response Times

Figure 2: Fulfilling of the individual tasks with 2D (red)
vs. 3D projections (blue).

tions was at 74.4% for the 3D system and at 64.3% for the
2D system. The results for the individual tasks are shown in
Figure 2a. To analyze the results, we performed statistical
tests. Correctness values for Questions 1 and 4 were 100%
for both 2D and 3D. For the other questions, the Shapiro-
Wilk test was used to check against a normal distribution.
As not all of them were normally distributed, we applied the
non-parametric Wilcoxon matched-pairs signed-ranks test
to check for statistical significance. Only the findings for
Questions 5 and 6 were statistically significant (p-values of
0.0156 and 0.0195, respectively). Both questions exhibit a
significantly higher correctness for the 3D system.

Then, we computed the average time spent by users to ful-
fill the tasks. The average time over all participants and tasks
were 59.3s for the 3D system and 40.7s for the 2D system.
The times for the individual tasks are shown in Figure 2b.
We performed the same statistical tests as for the correct-
ness. Question 4 was the only one with normal distribution
such that we applied a paired t-test, for all the others again
the Wilcoxon test. Questions 1 and 4 were the ones found to
be statistically significant (p-value of 0.0189 for both). Both
questions exhibit higher response times for the 3D system.

Evaluating the confidence measures, we compute that the
user satisfaction / confidence was somewhat higher when
using the 3D system (3.9 as opposed to 3.6). A Wilcoxon
matched-pairs signed-ranks test showed that this difference
is actually statistically significant (p-value 0.0078). More-
over, 100% of the users answered that they preferred oper-
ating with the 3D system. We also checked whether there is
a difference between expert and non-expert users, but it was
not statistically significant.
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Our tests indicate that Hypothesis 2 was confirmed. The
interactive 3D system really allowed users to produce better
results, which dismisses Hypothesis 1. However, this higher
correctness comes at the expense of spending more time.
Still, users prefer to use the 3D system.

5. 3D Cluster Visualization

3D interaction is critical in visualization, particularly in dis-
plays depicting sparse point glyph representations, as depth
perception becomes an issue. A strategy whereby groups of
points are enclosed by selectable surfaces may assist refined
data exploration. The projected data points are clustered in
viewing space and each data cluster is represented by a sur-
face, as illustrated in Figure 3.

We investigated several approaches to generate enclosing
surfaces for clusters and discuss their applicability. The sim-
plest solution is to generate the convex hull of the point clus-
ters, for which existing solutions are fast, robust, and pro-
duce simple meshes. Figure 3(c) shows the result of applying
this approach to the color-coded data point clusters shown in
Figure 3(b). Such surfaces are effective to reflect the shape
of convex clusters, however, convex hull visualizations of
non-convex clusters may lead to misinterpretations.

Alternatively, one may generate enclosing surfaces in
which the data points lie in the surface interior. A com-
mon approach for non-convex point clusters is the blobs
method by Blinn [Bli82], who associates each point with a
radial basis function and defines some parameters to con-
trol surface “blobbiness”. Along this line we have imple-
mented a kernel-based approach to generate enclosing sur-
faces. We chose the kernel K(p) = (1−||p||2)2 for ||p|| ≤ 1
and K(p) = 0 otherwise. Given the set of projected cluster
points {pi = (xi,yi,zi)}, we compute the function

fh(p) =
m


i=1

K

(
p− pi

h

)
, p ∈ R

3

with h being the minimum distance of two projected cluster
points in a minimal spanning tree. We resample the func-
tion over a regular grid and apply marching cubes [LC87]
to extract and render an isosurface that assures cluster con-
nectedness. Figure 3(d) shows the result of computing this
enclosing surface to the clusters in Figure 3(b).

The previous solution creates nice renderings, but requires
an adaptive adjustment of the radius of influence when clus-
ters come close to each other. The third and fourth surface
representations chosen to overcome this problem go back to
an approach by Rosenthal and Linsen [RL09]. It is based
on the GPU computation of 3D discrete Voronoi diagrams.
When computing a 3D discrete Voronoi diagram from the
points of the target cluster, a discrete distance field is com-
puted that describes the distance to the points of the point
cluster. Extracting isosurfaces from the distance field pro-
duces an enclosing surface similar to the one in Figure 3(d).

Moreover, one can exploit the natural neighborhood property
induced by the Voronoi tesselation and construct a hull from
those cluster points whose Voronoi cells were intersected by
the described enclosing surface. This hull is non-convex for
non-convex clusters. Results are visually similar to the well-
known -ball approach [EM94], but our solution is signif-
icantly faster and optimal in the sense that it includes the
minimal volume. Figure 3(e) shows the result when applied
to the clusters in Figure 3(b).

The fourth approach computes an enclosing surface
equidistant to the non-convex hull in Figure 3(e), which can
be obtained by extending the discrete Voronoi diagram com-
putation from point clusters to a discrete Voronoi diagram
computation from polygonal models. Consequently, enclos-
ing Voronoi-based surfaces can be generated with any dis-
tance to the hull by extracting isosurfaces from the new dis-
tance field. The resulting enclosing surfaces stick close to the
point cluster. Figure 3(f) shows the surface obtained from the
clusters in Figure 3(b).

6. User Study Evaluation of Cluster Visualization

We conducted another user study with the same format and
participants as in Section 4. In addition to the document data
set, we used a medical image data set with 540 objects and
28 dimensions. For this experiment, the data sets have been
clustered after projection (into five clusters). The first inves-
tigation was to compare surface-based cluster visualizations
to visualizations with color-coded point clouds. The second
investigation was to compare the four surface-based cluster
visualizations introduced in Section 5. The questions to the
participants were reduced to three, namely: 1) count the clus-
ters; 2) list cluster overlaps; and 3) identify clusters most
separate from each other. All participants had to fulfill all
three tasks for all five cluster visualization techniques. Dif-
ferent techniques were coupled with the two different data
sets leading to two disjoint sets of combinations. Half of the
participants used the combinations complementary to those
used by the other half.

Figure 4 shows correctness, times, and user confidence for
fulfilling the tasks with the different visualization techniques
in the order 1) convex hull, 2) enclosing surfaces isodis-
tant to cluster points, 3) non-convex hull, 4) enclosing sur-
faces isodistant to non-convex hull, and 5) color-coded point
cloud. We evaluate the correctness results for each data set
individually. As the distribution is non-normal, we use Fried-
man’s 2 test. Question 1 was excluded, as all answers for all
interfaces were 100% correct. The Wilcoxon matched-pairs
signed-ranks test delivers that only Question 2 is statistically
significant (p-value of 0.025) and only for the document data
set. For Question 2 on the document data set, the enclosing
surface isodistant to non-convex hull showed the best results,
whereas the convex hull ended up last. The other three ap-
proaches ended up in between with comparable numbers.

For the evaluation of the response times, the Shapiro-Wilk
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(a) Projection colored by class (b) Clustering of the projection (4 clusters) (c) Convex hulls

(d) Enclosing surfaces isodistant to cluster
points.

(e) Non-convex hulls computed from (d) (f) Enclosing surfaces isodistant to non-
convex hulls in (e)

Figure 3: Projection, clustering, and surface generation in visual space of a 3D LSP on a data set with papers in four areas of
knowledge.

(a) Correctness (b) Times (c) Confidence rates

Figure 4: Tasks with the four different surface visualizations (Interface 1-4) and color-coded point clouds (Interface 5).

test delivered a normal distribution: Consequently, we ap-
plied the one-way parametric ANOVA test. Again, only re-
sults for Question 2 are statistically significant (p-value of
0.022). Here, the two hull approaches had best results, while
the two enclosing surfaces ended up last.

Finally, we evaluated the user confidence results. The
Shapiro-Wilk test delivered a normal distribution, but the
ANOVA test indicated no statistically significant difference
among the approaches. However, we also asked the users to
rate their preference. 50% of the users answered that they
liked the non-convex hull best, followed by point clouds
(25%) and enclosing surfaces isodistant to non-convex hull
(18%).

The results show that point clouds are still an alternative to
surface rendering, as the lower confidence rates they got are
not statistically significant. Among the surface representa-
tions those with smaller volume were preferred. The convex
hull and the enclosing surfaces isodistant to cluster points
create too large volumes to keep clusters separated. In terms
of efficiency, the hull approaches allowed for lower response
times. Overall, the non-convex hull was the one that per-
formed well in all aspects and, thus, may be regarded as the
winner of the study.
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7. Interactive Exploration Results

The functionalities for multidimensional exploration de-
scribed in this paper were gathered in a Dataflow type sys-
tem. Data transformation functionalities may be accessed
just by plugging the proper module chosen from a module
directory, and interaction capabilities are added to the viewer
modules.

The 3Dproj system and demon-
stration video are made available at:
http://infoserver.lcad.icmc.usp.br/infovis2/Tools. System
features include:

• Selecting from several existing 2D projection techniques
to generate 2D views from the original data.

• Performing coordinated interaction of 2D and 3D LSP
projection views.

• Projecting from 3D to 2D. Orthogonal projection is avail-
able as well as several dimension reduction and multidi-
mensional projection techniques.

• Generating a 2D frame from a current 3D viewing posi-
tion for further exploration in 2D.

• Coordinating visualization windows so that selection of
groups affect all visualizations. This also includes object
space views, i.e., spatial data visualizations.

• Providing point- and various surface-based cluster visual-
izations.

• Combining groups of individual items and groups of clus-
ters to generate larger groups whose elements may be
saved for further manipulation.

• Dynamic post-clustering of projected results.
• Hierarchical clustering, including interactive cluster se-

lections to generate subclusters.

Coordination of 2D and 3D views. The ability to coordi-
nate multiple 2D and 3D projections also encourages novel
exploration strategies, as illustrated by the examples de-
picted in Figure 5. Visualizations depict the corpus of 2,814
scientific papers employed in the quantitative analysis in
Section 3.

Figure 5(a) illustrates the coordination from 3D to 2D.
The user selects an enclosing surface (selection indicated by
the wire-frame view); selected points (displayed with full
opacity and bold circumference) are highlighted in the 2D
view. Notice that user selection in 3D triggers the display of
the main topics addressed by the papers in the group (nu-
cleic acid and molecular biology). Other types of data could
trigger other summarization strategies.

Figure 5 also shows how coordination allows a user to
brush the 2D view to highlight groups of possible interest
in 3D. Users can locate well ‘resolved’ groups that are pre-
served in both spaces and are not strongly affected by the di-
mensionality reduction to 2D, such as the one in Figure 5(b).
They may also identify hidden sub-groups. For instance, Fig-
ure 5(c) illustrates that a group of points in the 2D view,
which looks also grouped in the original 3D view, actually

separates in two sub-groups when the 3D view is rotated.
This prompts the user to analyze the group for sub-groups of
interest within.

(a) Selecting a document group in 3D and examining the corre-
sponding points in the coordinated 2D view.

(b) Selecting two well formed groups in 2D (A and B) and high-
lighting corresponding documents in the coordinated 3D view.

(c) Selecting a group in 2D that separates in 2 groups in 3D.

Figure 5: Coordinating 2D and 3D views for data explo-
ration.

Such coordinated multi-space environment supports mul-
tiple ways of drilling down in the data. By selecting groups
of papers, users may see their topic and content and focus
on that in a separate window. In further refinements a group
may be split into sub-groups, so that users gradually find
their way to the documents that require further examination.

Hierarchical clustering. We have implemented a simple
yet useful mechanism to help navigation in the 3D point rep-
resentation, based on a user-guided clustering process car-
ried out hierarchically. First-level clustering may be seen in
Figure 6(a) and its cluster tree is shown in Figure 6(b). The
tree both guides the hierarchical clustering process and as-
sists user navigation through the cluster hierarchy. At each
level, users may select a cluster and refine it further by ap-
plying another clustering process. Figure 6(c) shows the sec-
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(a) Clustering after projection. (b) Cluster tree. (c) Subclusters of selected
cluster.

(d) Hierarchical cluster tree.

Figure 6: Hierarchical clustering.

ond level of the tree after a cluster has been refined, and
Figure 6(d) shows the updated cluster tree with two lev-
els. At each step the user may choose between bisecting k-
means [SKK00, Mac67] or k-medoids [KR90] as clustering
method. We refer to the accompanying video for further il-
lustration.

Exploring image sets through their feature spaces. A
particularly difficult type of data to explore is that of im-
age collections. While automatic classification solutions are
progressing, there is the need for image set exploration so
that the user has final control over their interpretation, and
judgement of the adequacy of feature sets for their represen-
tation. This example aims at illustrating the value of the third
dimension in the exploration of this type of highly sensitive,
difficult to describe, data sets.

The data set is a segment of 1,000 photos from the Corel
photo and picture data set, composed by 10 different classes,
with 100 pictures in each class. 2D and 3D visualizations
were generated from the same set of 150 sift features [LW03]
extracted for each image. Figure 7 illustrates the exploration
of the data. It shows that 2D projections (see Figure 7(a))
were capable of separating some groups of photos, while
mixing various other groups. We have created the top level
3D cluster tree with 10 clusters, employing the k-medoids
technique and Euclidean distance as a measure of dissimi-
larity. Three of those clusters are shown in Figure 7(b). That
view is coordinated with the 2D projection. The first clus-
ter, on top of Figure 7(b) and highlighted in Figure 7(a),
grouped well in both 2D and 3D, and corresponds to 86 of
the 100 photos in the flower class, with no element from
other classes.

From Figures 7(c) and 7(d) it can be easily noticed that
the two other well-separated 3D clusters were very mixed
with other points in the 2D projection. The bottom cluster
contains 97 of the 100 dinosaur drawings without any items
from other classes (Figure 7(e)). The middle cluster contains
55 photos, 50 of which belong to the elephant class (Fig-
ure 7(f)). This is a very difficult class to separate due to other
photos similar in information content, mainly in the classes

of horses and landscapes. This example illustrates both the
capability and the need for the extra projection dimension,
particularly in challenging applications. Figure 7(g) shows
the relative precisions of the 2D and 3D projections, by
means of neighborhood hit calculations, also reflecting the
better separability of 3D. In our system, images correspond-
ing to groups can be loaded under users’ selection (by draw-
ing a region in 2D or by a single click on the surface in 3D).

Exploring the feature space of multi-dimensional spatial
data. The same interaction framework applies to multi-field
scalar data, as illustrated in Figure 8(a), which depicts vi-
sualizations of particle data. This is a time-varying spatial
data set with a multidimensional feature space [WN08],
output by the simulation of the propagation of an ioniza-
tion front instability. Although the spatial data are sampled
on a volumetric grid, data points are unstructured in mul-
tidimensional feature space. The data set includes multiple
attributes, namely density, temperature, mass abundances of
eight chemical species, and velocity. It spans 200 time steps,
each with 37 ·106 points, resulting in 1.7 GB of data per time
step. For performance purposes, data has been spatially sam-
pled. For an unbiased sampling, random sampling is desir-
able, resulting in a set of points randomly distributed in the
volumetric space, where each point carries multiple proper-
ties.

The left frame in Figure 8(a) depicts a 3D Star Coordi-
nates view of the data feature space, as in [LLRR08], for a
single simulation time step. Our visualization, on the right
side, has been created by pre-clustering followed by projec-
tion in 3D using LSP. Our approach conveys the same global
shape of the data space, but it stresses local cluster formation
and separation. Users may narrow down the examination to
particular coherent spatial regions by identifying and delim-
iting clusters interacting with their enclosing surfaces. This
is exemplified in Figure 8(b), left and right frames, which
display enclosing density surfaces generated for some 3D
clusters, in Star Coordinates and LSP views, respectively.
Users interact to define how many clusters and correspond-
ing surfaces they want to extract.
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(a) 2D LSP. Highlighted
points correspond to top
cluster in 7(b).

(b) 3D projection, with three en-
closed clusters.

(c) 2D LSP. Highlighted
points correspond to bottom
cluster in 7(b).

(d) 2D LSP. Highlighted
points correspond to middle
cluster in 7(b).

(e) Some images in the bottom cluster. (f) Some images in the middle cluster. (g) 2D vs. 3D precision.

Figure 7: Photo features projections. Color is target class.

(a) Placement of particles with original grouping by
property

(b) Surface view of particle groups, after clustering in
visual space to obtain 30 groups, and zooming in

Figure 8: Visualizations of the feature space of the parti-
cle simulation data. Star Coordinates views on the left, LSP
views on the right.

8. Conclusions

We discussed how projections in 3D space offer a unify-
ing framework for handling both abstract and spatial high-
dimensional data. A similarity-based multidimensional pro-
jection technique was adapted to generate projections in 3D
space. We illustrated how the added dimension reduces in-
formation loss and brings enhanced group differentiation ca-
pability to users when compared to 2D displays by means
of quantitative metrics, practical usage scenarios, and a user
study. However, interacting with 3D projections requires
suitable strategies. We proposed interaction facilities that
combine information on post-clustering of the projected data
with geometrical information derived from the clusters to
obtain selectable enclosing surfaces. Several alternative ap-
proaches for extracting surfaces that shape up the partition
of the 3D space, while retaining interactive rendering rates,
were considered and compared. Facilities are integrated into
a system that incorporates the projection, clustering and vi-
sualization techniques of the proposed framework. As ad-
ditional interaction facilities 2D-3D coordinated views and
hierarchical cluster generation are included, as well as user-
driven hierarchical clustering.
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