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Abstract
Fiber tracts detection is an increasingly common technology for diagnosis and also understanding of brain func-
tion. Although tools for tracing and presenting brain fibers are advanced, it is still difficult for physicians or
students to explore the dataset in 3D due to their intricate topology. In this work we present a visual exploration
approach for fiber tracts data aimed at supporting exploration of such data. The work employs a local, precise and
fast 2D multidimensional projection technique that allows a large number of fibers to be handled simultaneously
and to select groups of bundled fibers for further exploration. In this approach, a DTI feature dataset, including
curvature as well as spatial features, is projected on a 2D or 3D view. By handling groups formed in this view,
exploration is linked to corresponding brain fibers in object space. The link exists in both directions and fibers se-
lected in object space are also mapped to feature space. Our approach also allows users to modify the projection,
controlling and improving, if necessary, the definition of groups of fibers for small and large datasets, due to the
local nature of the projection. Compared to other related work, the method presented here is faster for creating
visual representations, making it possible to explore complete sets of fibers tracts up to 250K fibers, which was
not possible previously. Additionally, the ability to change configuration of the feature space representation adds
a high degree of flexibility to the process.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques— I.3.8 [Computing Methodologies]: Computer Graphics—Applications H.5.0 [Information Interfaces
and Presentation]: General—

1. Introduction

Diffusion Tensor Imaging (DTI) quantifies, using a tensor
field, the diffusion of the movement of molecules in biologi-
cal tissues caused by intern thermal energy. Some tissues re-
strict this movement decreasing molecule displacement. Tis-
sues that allow molecules to travel easily in a particular di-
rection are called anisotropic. An example is the brain white
matter. In the white matter the water molecules move faster
in the direction of the length of the neuron cells, composing
the brain fibers. DTI has gained importance in the last years
due its capability to reflect direction of neuron fiber bundles
and its relation to brain functionality.

Techniques employed to visualize DTI datasets can be
classified in 3 main categories. In the first, glyphs are used to
represent tensors. Some glyph visualizations generate good

visual representations, but interpretation of the underlying
fiber structures is limited due to clutter in visual space.

Tensor data can also be converted to scalars, and in
this case classical volume visualization techniques are em-
ployed. Using scalar visualization it is possible to find areas
of interest, such as a tumor inside the brain. The disadvan-
tage is that we loose information when reducing the tensors
to one scalar, such as directionality.

In the third category of visualization for DTI, tensors are
converted into vectors using spectral decomposition. Trac-
ing streamlines using these vectors correspond to finding di-
rections of the brain fibers, the fiber tracts, which are three-
dimensional pathways representing characteristics of water
diffusion. Advantages of this group are the global view of
the diffusion inside the brain and of the connectivity between
different brain zones. This visualization is widely used in
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the analysis of DTI datasets. However, exploration in visual
space remains a challenging task due to the large number of
derived pathways and the complexity of fiber space geome-
try [CDZ∗09].

Information visualization techniques have been proposed
to relieve analytic problems of multi-valued volume data
with complex topology through mappings associated with
feature spaces. Specifically to the case of fiber tracts visual-
ization, Chen et al. [CDZ∗09] and Jianu et al. [JDL09] have
used multidimensional projection techniques as an effective
way to explore the underlying feature space and find groups
of similar fibers as well as the relationships between such
groups. In this work we also adopt multidimensional projec-
tion techniques to explore DTI datasets, but refine the ap-
proach by improving the layout of fiber features and propos-
ing a novel interactive approach were the user can explore
large fiber tracts using samples and rearrange the layout as
his or her analysis progresses. In addition, a new visual rep-
resentation of fiber bundles using surfaces is suggested, of-
fering an alternative view of bundle structures. The main
contributions of our work are listed below:

• a process to explore large collections of fiber tracts em-
ploying a fast and precise multidimensional projection
technique of the fibers feature space;

• an exploration strategy whereby the user is in control of
the final outcome of the projection. With that strategy the
entire fiber dataset can be explored at once starting from
a sampled fraction of it;

• a new and fast approach for generating surface representa-
tions of fibers sets, aiming at improving the perception of
bundles in object space when compared to other common
representations, such as lines or tubes;

• evidence that curvature features improve clustering of
fibers in feature space.

In Section 2 we discuss related work and give evidence of
our contributions. Section 3 describes the methods used for
fiber feature extraction and the multidimensional projection
technique responsible for creating the visual representation.
The attained results are presented and discussed in Section 4.
Finally, in Section 5 we draw conclusions and discuss future
work.

2. Related Work

The interactive analysis of volumetric datasets involves
very challenging tasks for multivariate volume visualization,
where each voxel is described by more than one scalar, vec-
tor or tensor. Due to the ability of information visualization
techniques to explore multidimensional information, efforts
are being made to integrate them in the analytical processes
that were usually addressed by scientific visualization meth-
ods.

In this section we describe contributions with the fruitful

purpose of combining techniques from the information visu-
alization field into a volumetric visualization environment,
an increasingly common trend.

One of the first proposed solutions in this area is
the WEAVE system [GRW∗00]. WEAVE provides an ex-
plicit coordination between volumetric visualization and bi-
dimensional scatterplots via linked-brushing. The SimVis
system [DGH03] was developed based on the same ideas,
with the addition of a language to formalize subsets that can
be instantiated by the linked-brushing mechanism.

More recent techniques try to handle the complete feature
space at once. Akiba and Ma [AM07] suggest a three-spacial
visualization joining parallel coordinates [Ins85] represent-
ing the feature space, with volumetric rendering in the ob-
ject space, coupled with uni-dimensional plots showing the
evolution in time of a selected property. Similarly, Blaas et
al. [BP08] define a fast approach to render massive parallel
coordinates, supporting analysis of larger scientific datasets
in real time.

Linsen et al. [LVRR08] have proposed an approach based
on surface extraction from multidimensional volume data.
The surface segments the data according to a multi-variate
function over the feature space. In this approach, the fea-
ture space exploration is done using a hierarchical cluster-
ing method based on density, whose clusters are shown as
density level sets in a layout constructed by the 3D star co-
ordinates technique [SY06]. Upon this layout, the user can
select the clusters that correspond to surfaces of interest in
object space.

In another work, Linsen et al. [LVLR09] present a visual
approach based on surface extraction from multi-variate vol-
umes. The guideline for the surface extraction is decided
based on an analysis of the feature space using a hierarchical
cluster, shown as a tree in a 2D radial layout. In this repre-
sentation, the user can select groups of interest and observe
their features using a parallel coordination representation.

We apply this combination of multidimensional visual-
ization and scientific visualization methods for the purpose
of supporting interaction with data sets consisting of brain
fiber tracts. For the analysis of fiber tracts, an interactive
method was introduced in [CDZ∗09], which improves the
exploration of the 3D fibers representation using a 2D rep-
resentation containing a low-dimensional embedding of the
DTI fibers. The 2D representation is created using a mul-
tidimensional scaling technique, preserving the spatial re-
lationships of the fiber tracts and providing an uncluttered
representation of the data. This reduces the time spent on
the analysis and the mental workload in recognizing 3D DTI
fibers. In [JDL09] a similar visual exploration paradigm was
presented that facilitates navigation through fiber tracts by
combining a traditional 3D model viewing with two infor-
mation visualization representations. One of them shows a
hierarchical cluster tree of the fibers, and the other one is a
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projection of the data using a multidimensional scaling tech-
nique.

Regarding of the benefits of projecting fibers and bundles
as resource to handle complexity, preforming selection in
object space remains an issue. An extension of the selection
techniques of the above mentioned systems was recently pre-
sented, which employs boxes interact with the 3D objects.
In that work [CCA∗11], multiple blocks are combined with
boolean operations and widgets to select fibers. The benefits
are that the user can manipulate the fibers and refine their
selection in the 3D view. Boxed shape probes have the abil-
ity to be precise in terms of subspace location of selected
individuals, but interacting with whole fibers or fiber bun-
dles with geometries that sometimes diverge in object space
remains challenging.

Another contribution to the problem of interacting
with fiber tracks was recently presented by Demiralp et
at. [JDL11]. Their work employs 2D paths to represent bun-
dle of fibers in a 2D neuronal map. First the whole set of
fibers is clustered; for each cluster a stylized 2D line is cre-
ated that is the abstraction of this cluster. These 2 maps are
created for the 3 axes, and the user employs them to select
fibers that are synchronized with the tube representation in
the 3D view. The advantage of this approach is that part of
the anatomical information is preserved in the projection,
which makes the exploration more intuitive for a new user.
The problem with the approach is to split the cluster when
and if necessary, since clustering is not always precise re-
garding fiber tracts and their association with brain function.

In the literature there is also much work aiming at au-
tomatically cluster fibers, but there is still the necessity to
create new ways to display and explore these clusters. In
the last years a few approaches were proposed to tackle this
problem. For example, Chen et al. [CZCE08] employ sur-
faces enclosing clusters of fibers resulting from a hierarchi-
cal clustering algorithm. These surfaces are created using
the alpha-shape algorithm considering the set of points from
each fiber. Additionally, they include some principal fibers
inside the surface. Latter Goldau et al. [GWH∗11] proposed
a technique to visualize tensor-derived parameters, such as
fractional anisotropic. This is done bounding the fibers with
a surface and using a color-coded slice that moves in the
directions of the fibers inside the surface. The color used
in the slice represents the tensor-derived parameter. Otten et
al. [OVvdW10] proposed another way to visualize a group
of fibers as a whole. They use illustration techniques to re-
duce geometric complexity and emphasize high-level struc-
tures. In that work, fiber bundles are represented using the
silhouette, contours and hint lines representing the fibers, but
this technique lacks depth perception.

The approach proposed here is similar to two of previ-
ous ones [JDL09, CDZ∗09] in some aspects. We also com-
bine projections of feature spaces with object space visu-
alizations. Our approach adds to the available resources in

a number of other aspects. It can quickly handle datasets
that are one to two orders of magnitude larger. We do
that by employing a recently published and faster projec-
tion technique named Local Affine Multidimensional Projec-
tion (LAMP) [JCC∗11]. In addition, we support the analysis
based on samples, placing the user in the loop by influenc-
ing and improving the projection layout, thus minimizing the
number of iterations between projecting and brushing dur-
ing data analysis. LAMP is also capable of distinguishing
groups of bundled fibers with high precision. In contrast to
other local multidimensional projection techniques, which
also make use of control points as a starting point, LAMP
can precisely map instances to the visual space using fewer
control points. It speeds up user manipulation and organiza-
tion of the sample projection employed to generate the final
layout.

Apart from the advantages in scalability and precision,
our system implements different visual representations for
a group of selected fibers. For example, we make use of
fibers’ color to represent a group. We can also represent the
fiber using tubes, which give us a better depth perception
of the spatial position of each fiber, although this represen-
tation increases geometry complexity reducing interactivity.
The third way to represent our selected fibers is surface ex-
traction, enhancing the ability to recognize fiber tracts with
potential for reducing even more the effort imposed on the
user in recognizing existing bundles.

In the following sections we describe the methods em-
ployed in this work for performing feature extraction and
multidimensional projection, as well as the interaction ap-
proach.

3. Improved projection based approach for the analysis
of fiber tracts

In order to create the visual representations using a pro-
jection technique, it is necessary to calculate dissimilarities
amongst the objects under analysis. To accomplish that for
fibers, we convert them into feature vectors; then the dissim-
ilarities between fibers are calculated using Euclidean dis-
tance between the vectors. In this work we extract features
based on spatial and curvature information.

The spatial features, fspt , comprise the coordinates of the
start and end points of each fiber, its center of mass and the
fiber length. The curvature features, fcrv, are calculated us-
ing the Discrete Fourier Transform (DFT). First, a few points
are spatially sampled over a fiber pathway, then a 1D DFT
is applied on the components (coordinates) xi, yi, zi of each
point; where i varies from 1 to k, and k is the number of
sampled points on the fibers. It results in three vectors of
size k with the spectral coefficients of each component. We
only use the magnitude (real part) of the coefficients. From
those vectors we get the fibers high-frequency values since
they contain most of the information about finer details of
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the fibers shape [PGD∗05]. In our examples, the resulting
features are 30-dimensional vectors, 10 from each compo-
nent.

The final set of features is obtained by joining both sets of
features f = α · { fspt}∪β · { fcrv}. The α and β parameters
are weights for the final features according to the importance
of the information conveyed by each set of features. Spa-
tial features code information about the spatial location and
proximity between fibers, and curvatures features are use-
ful for describing their pathways. Experimentally, we have
discovered that the best values are α = [3,5] and β = 1.

To project these feature vectors on the visual plane
we employ the Local Affine Multidimensional Projection
(LAMP) [JCC∗11] technique. We have tested several dif-
ferent projection approaches (see Section 4.5), and LAMP
presents the best trade-off between precision and computa-
tional performance. Considering that the m-dimensional fea-
tures are embedded into a Rm space, LAMP computes a set
of representative samples, the control points, which are pro-
jected from Rm to the visual space with a fast and precise
multidimensional projection technique. The final projection
is attained building affine mappings, one for each instance to
be projected, based on the position of the control points. The
flexibility of LAMP resides in the fact that its formulation
take into account only control points in a neighborhood of
each instance to be projected. That is an interesting property,
allowing the user to control the final projection via manip-
ulation of a small portion of the entire dataset (the control
points). In this work, representative Fibers can be manually
positioned in the visual feature space, affecting the separa-
tion of fiber bundles in final projection.

Next, we present the application of this approach, starting
with a concise analysis of the resulting feature space, and
finishing with the exploration of a large fiber dataset.

4. Results

The results presented in this section were generated using 3
different fibers datasets. Table 1 details their content.

4.1. Analysis of Feature Spaces

The first issue when projecting a fiber dataset under analy-
sis is how to identify the best set of features to describe that
dataset. To that purpose, our framework is capable of aid-
ing comparison of distinct feature spaces. To guide the de-
cision on which feature set better groups fibers we employ
the cluster silhouette coefficient [TSK05], which measures
both cohesion and separation between clusters, over projec-
tions of different feature sets of pre-classified fibers. The best
silhouette coefficient indicates the most discriminant feature
space [JCC∗11]. In this work, the silhouette of a projection is
given by the average of the silhouettes of all instances. With
this methodology we have chosen the types of fiber features
to use.

Table 1: Fibers datasets employed in the tests.

Name Description
PBC dataset obtained from the 2009 Pitts-

burgh Brain Competition (PBC)
Brain Connectivity Challenge (http:
//pbc.lrdc.pitt.edu/). It is com-
posed by 250,000 fibers, 19,000 of which
classified into 8 different classes.

CHEN a human brain dataset composed by 1,248
fibers, provided by [CDZ∗09]

JIANU a human brain dataset composed by 690
fibers, provided by [JDL09]

(a) Spatial feature
space.

(b) Curvature feature space.

(c) Combined feature spaces. (d) Fibers Visualization.

Figure 1: LAMP projections from distinct feature spaces.
Their silhouette coefficients are 0.5054 (a), 0.5482 (b) and
0.5494 (c), indicating that the combination of spatial and
curvature features render the best discrimination amongst
the groups of classified fibers.

Figure 1 shows LAMP projections for three different fea-
ture sets extracted from the 19,000 classified fibers of the
PBC dataset. We use 50% of the nearest control points
of each projected instance to build the projections. Fig-
ure 1(a) shows the result using only spatial features. Fig-
ure 1(b) shows the result using only curvature features, and
Figure 1(c) shows the result of combining both sets of fea-
tures. The silhouette coefficients the projections are 0.5054,
0.5482 and 0.5494 respectively, matching the visual inspec-
tion. Figure 1(d) shows the fiber dataset visualization with
the same colors employed in the projections.
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(a) Lines (b) Tubes (c) Surfaces

Figure 2: Comparison of fiber visualizations using conven-
tional lines, tubes, and our surface approach. The depth in-
formation provided by surfaces is a helpful hint to identifi-
cation of intricate fiber bundle geometries.

4.2. Enhancing Fiber Visualizations

After projecting fibers feature spaces, the proposed ex-
ploratory approach is based on linked views (see Figure 3),
in which the fibers in object space are highlighted according
to a selection of points on the projection. Conventionally,
fibers in object space are drawn using lines or tubes. How-
ever, with such visual representation it is often difficult to see
all the pathways defined by a group of fibers due to interfer-
ence with other groups from certain viewpoints. Although
tubes resolve the problem of depth perception of lines, they
also increase the geometric complexity of the model, de-
creasing the level of interactivity as the number of selected
fibers increases. To overcome both the geometric complexity
of models and the speed of interaction, we visualize groups
of fibers based on surfaces. Figure 2 shows a comparison be-
tween distinct visual representations for the JIANU dataset.
Surface representations can convey depth information bet-
ter than tubes or lines, easing recognition of fibers pathways
without increasing the geometric complexity. In all pictures
in this paper, objects in gray are fibers that are not high-
lighted, and drawn as lines.

The method to compute a fiber bundle surface is summa-
rized in Algorithm 1. This is a sped-up version of the ap-
proach proposed in [LVRR08]. This algorithm is divided in
two steps. First, we need to have a continuous representa-
tion of the group. This continuous field is created using a
radial kernel around each point that forms the fibers. Linsen
et al. [LVRR08] propose to compute the ∆ (voxel size) us-
ing a minimal spanning tree to guarantee the connectivity in
the extracted surface, but this procedure is very expensive,
especially in this kind of problem, where we have hundreds
or thousands of fibers composed by hundreds of points each.
In this case, it is not essential to guarantee full connectiv-
ity since having and outlier fiber rendered using a different

surface is not critical and, in fact, may help recognize impor-
tant topological changes. Thus, we employ a static grid with
a predefined size that embeds every point from the fibers. In
our tests we have found that a grid with resolution of 100
will suffice. Following that gridding procedure, we generate
an isosurface with an isovalue c. Empirically, we have found
that a good value for c is 9

16 .

Algorithm 1 Surface creation from a fiber set.
Require: F : selected fibers.
Ensure: Sur f : a mesh of triangles.

1: procedure CREATESURFACE(F)
2: P = {Points ∈ fi,∀ fi ∈ F}
3: Grid← GENERATEGRID(P).
4: Sur f ←MARCHINGCUBES(Grid,c).
5: end procedure

Require: P : points.
Ensure: Grid : a grid embedding the points.

6: procedure GENERATEGRID(Points)
7: dim← 100
8: [pmin, pmax] = BOUNDINGBOX(Points)
9: ∆← pmax−pmin

dim
10: Grid← Volume of size (dim,dim,dim)
11: for all pi ∈ P do
12: C← pi−pmin

∆
. Sphere center.

13: R← 5 . Sphere radius.
14: for all v j ∈ SPHERE(C,R) do
15: d← DIST(v j,C) . Euclidean distance.
16: v j← v j +( 1−d

R )2

17: end for
18: end for
19: end procedure

4.3. Linked views

One important feature of the interaction in this context is
linking a projection of the feature space to the 3D object
spacial view of the fibers. This linked-brushing mechanism
aims at verifying if groups on the projected space represent
fibers with similar shapes and shared regions of object space.
This process is illustrated in Figure 3, where three groups of
fibers are selected and colored in the projection. The fibers
belonging to these selected groups are highlighted in object
space with the same colors.

The coordination in the opposite direction is available too.
Under selection of fibers in 3D object space, one can find
fibers with similar features in the feature space projection.
However, due to the large amount and the overlapping of
fibers in different bundles, it is not possible to select all the
similar ones in the object space. In this case, as shown in
Figure 4, small groups or individual fibers can be selected in
object space (Figure 4(a)), with their corresponding points
highlighted in the projected space (Figure 4(b)). In this view,
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(a) Selection of fibers in the
projected feature space.

(b) Highlight in object space of
fibers selected in (a).

Figure 3: Coordination from projected 2D space (a) to ob-
ject 3D space (b).

(a) Selection in object space. (b) Selected fibers in pro-
jected space.

(c) Selection in the neigh-
borhoods of the highlighted
points in (b).

(d) Highlight in object space of
the fibers selected in (c).

Figure 4: Two-way coordination between the object and
projected spaces to guide the selection of similar fibers.

one can use these highlighted points as a guide to select ad-
ditional neighboring points (Figure 4(c)). The fibers repre-
sented by these selected neighborhoods are then highlighted
in object space (Figure 4(d)), showing additional fibers, sim-
ilar to the ones originally selected (see Figure 4(a)). This
functionality reinforces the advantages of using multidimen-
sional projections to give users access to fibers based on sim-
ilarity of features.

4.4. Exploration of Larger datasets

At the beginning of the exploratory process there may be
hundreds of thousands of points and fibers. Even with ex-

Figure 5: Example of an exploratory scenario of a large
brain fiber dataset. Transparency can be used to enhance
the ability to locate dense regions on projections.

tremely fast projections, if we inspect the PBC 250,000
fibers dataset shown in Figure 5 (left), there is large over-
lapping of points. In this section we present two approaches
to explore datasets such as these.

4.4.1. Use of transparency

To enable better exploration in overloaded views one strat-
egy is to apply transparency to the points on the projection
allowing the identification of density of a region. The result
of this process is shown in Figure 5 (middle views). Denser
regions are more opaque and can direct the start of the explo-
ration of large datasets. In Figure 5 (right views), we select
two distinct groups of points and assign different colors to
them, coloring the corresponding fibers accordingly.

Alternatively, one can apply a cluster algorithm to the pro-
jection and represent each cluster of fibers with a different
color in both views. This strategy supports multilevel ex-
ploratory tasks starting with an overview until finding small
clusters of interest.

4.4.2. Sample-based exploration

To relieve the cognitive overload involved in exploring too
many data points at once, our approach allows the user to in-
fluence the final layout of the projection by interacting with
a small sample of projected fibers first.

We perform this by selecting a small sample of fibers
from the complete dataset, and projecting them to the vi-
sual space. In the examples here the samples are randomly
selected. These samples can be explored and their position
on feature space changed, driving the projection of the re-
maining points. Figure 6(a) shows the projection of a small
sample with 500 instances of the PBC feature dataset. A se-
lected group of points and the corresponding fiber pathways
are colored in blue.
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Since LAMP allows users to interfere with the projection
process by manipulating small samples (the control points),
exploration of a large dataset can be sped-up and more easily
attained. For instance, Figure 6(b) presents two groups sep-
arated in the sample projection, the green and red groups,
that may be considered similar when the object space is in-
spected. If the user wishes, he or she can manually join both
groups into one group. Figure 6(c) shows the userst’ change,
colored in red and highlighted in object space. This initial
manipulation is then propagated to the final projection, since
the geometry of the final projection is always guided by
the projection of the control points. This type of control al-
lows the user to correct imprecisions caused by preprocess-
ing steps without data handling.

In addition, the initial color assigned on the sample pro-
jection can be propagated to the final projection. Here we
accomplish this by simply assigning, to each new projected
instance, the color of the most similar control point. Fig-
ure 6(d) presents the final projection of the complete PBC
dataset. This initial coloring can then guide the exploration
of the full dataset.

In the previous example, from Figure 6(b) to Figure 6(c),
the user joined the green and red groups. Alternatively, if
the user considers that these two groups belong to distinct
classes of fibers, he or she could manipulate the control
points as shown in Figure 7(a). The final projection gener-
ated from this manipulation is shown in Figure 7(b) and the
fibers highlighted with the same color used in projection are
shown in Figure 7(c). This example shows the robustness of
LAMP to preserve changes expressed by user, even when
separating similar fibers (e.g., fibers belonging to the same
class). This is feasible by means of the truly local formula-
tion of LAMP, which takes into account only control points
in a neighborhood of each instance for the mapping. In these
two examples, only 25% of the nearest control points of each
projected instance is employed to build the final mappings.

4.5. Comparison with previous approaches

One of the main differences between our work and previous
ones is that we have adapted the process to accommodate
much larger datasets and have improved interactivity by em-
ploying LAMP. This improvement in scalability and interac-
tivity is attained with no loss in precision measured by stress
or by the silhouette coefficient.

Figure 8 presents a projection of the CHEN dataset using
our approach, as well as the one produced by the approach
defined in [CDZ∗09], with the fibers highlighted in the same
colors as their selected groups.

Another way to evaluate projections is by considering
how they reflect the given feature space. Figure 9(a) shows
the distance plot produced by LAMP. It plots the distances in
original feature space against distances in projected space. It

(a)

(b)

(c)

(d)

Figure 6: Exploring a large fiber dataset using a sampling
strategy via LAMP. In (a) and (b) The user starts by pro-
jecting and exploring a small portion of the dataset. Groups
can be set apart or joined together (b). Then the rest of the
dataset is projected and colored using these changes as guid-
ance (d).
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(a) (b)

(c)

Figure 7: An alternative sample projection manipulation for
exploration shown in Figure 6. Even though the samples in
red and green groups belong to the same class, LAMP is
capable of preserving the layout established by the user.

can be seen that the LAMP projection reconstitutes the orig-
inal distances quite well, that is, if the chosen features are
capable of describing groups in the dataset, so will the pro-
jection. Figure 9(b) presents the distance plot when the pro-
jection technique is the same of the employed on the Chen’s
work, the classical scaling (MDS) technique. Since we do
not have the features of Chen’s work, as an analysis exer-
cise, we create an MDS projection using our features just to
compare the precision of LAMP with the MDS approach.

The difference in precision between Classical MDS and
LAMP is not significant, but MDS is computationally much
more expensive. In fact, in this case LAMP is indeed more
precise. The MDS projection of Figure 8 presents 0.00112 of
stress against 0.00102 attained by LAMP. Table 2 presents
the running times obtained on an Intel R© CoreTM i7 CPU
920 2.66GHz, with 8GB of RAM, comparing LAMP with
other state of art techniques, that is, Piecewise Laplacian-
based Projection (PLP) [PEP∗11] and Part-Linear Multidi-
mensional Projection (PLMP) [PSN10], and the MDS tech-
nique used on Chen’s [CDZ∗09] work. All of them are im-
plemented in Java. We were not able to run the full PBC
dataset with the MDS technique on the mentioned computer.
It is possible to notice that LAMP is some orders of magni-
tude faster than MDS. It is slower than PLMP, but it is much
more flexible to handle the final projection through the con-
trol points due to its local nature. Furthermore, LAMP re-

(a) 2D projection using LAMP.

(b) 2D projection from MDS
technique used in [CDZ∗09].

(c) Fiber visualization of
the CHEN dataset.

Figure 8: Projections created using our approach (a) and
the method in [CDZ∗09] (b), yielding similar point place-
ments with highly differing processing times. (c) shows the
highlighted fibers with the same colors employed in the pro-
jections.

(a) Distance plot for LAMP. (b) Distance plot
for [CDZ∗09].

Figure 9: Distance plots for our approach (a) and
[CDZ∗09] (b), both based on our feature space.

quires less control points than PLP and PLMP. This is an
important aspect of our user centered approach, since better
control over the final projection can be attained by handling
less information. We refer to [JCC∗11] for comparison be-
tween LAMP and other projections.

To compare visual quality between projections in our
case, we compute the silhouette coefficient for PLP, PLMP,
MDS and LAMP, as shown in Table 3. We have employed

c© 2012 The Author(s)
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Table 2: Running times (in seconds) comparing our ap-
proach and other approaches.

Dataset PLP PLMP LAMP MDS
PBC (250K) 273.07s 1.01s 7.26s —
PBC (19K) 1.01s 0.06s 0.24s 105.33s
JIANU 0.11s 0.02s 0.02s 0.13s
CHEN 0.04s 0.02s 0.01s 0.32s

the labeled PBC dataset with 19,000 fibers, considering
three different feature spaces: curvature, spatial, and both
combined. There is no significant difference between the
measured values, indicating that amongst those techniques
the capability of locating groups of fibers is similar. The im-
provement of the curvature feature over the spatial feature is,
however, clear in some cases.

Table 3: Comparison of the group quality using silhouette
coefficient of the techniques shown in Table 2.

Features PLP PLMP LAMP MDS
Curvature 0.6050 0.4826 0.5482 0.5354
Spatial 0.5496 0.5025 0.5054 0.5251
Both Combined 0.6040 0.6269 0.5494 0.5359

We could not compare to the method proposed in [JDL09]
because we did not have access to their proposed tool.

Figure 10: Main window of the developed system to explore
fiber tracts datasets.

4.6. The System

All the needed algorithms and methods were implemented
as components inside our visualization framework, which

allows users to create data transformation pipelines accord-
ing to their needs. The core of this system is composed by
data readers, data writers, multidimensional projections, and
views in 2D and 3D. In our case, we have developed extra
components to manipulate fiber data, which extract feature
vectors, create surface views of fiber bundles and visualize
fibers pathways in object space. All these views are linked,
and interaction in one view propagates to all others.

Figure 10 shows the main screen of the framework with
the pipeline used to create two views for a fiber tracking
dataset. In one view we present the classical representations
as lines in 3D and colored using class information. In the
second view we can see the 2D projection.

5. Conclusions

We have presented a strategy for the exploration of Diffusion
Tensor Imaging datasets, as well as a visualization frame-
work made freely available. We have focused in exploration
based on fiber tracts.

In this work we employed spatial and curvature features
to define feature spaces, and LAMP projection technique
to represent the feature space in a projected space. Com-
pared to previous strategies, our employment of LAMP as
a projection tool has made the interaction with very large
fiber datasets possible, with capability of exploring 250,000
fibers, with visual quality equal or superior when compared
to previous approaches. We have also shown evidence that
curvature features improve visualizations compared to spa-
tial features alone.

Additionally, LAMP adjusts very well to positioning, in
visual space, of sampled points. This capability allows the
user to organize groups of fibers based on projected feature
space and relate that to his or her findings, providing, there-
fore, a novel, fast, and intuitive way for the user to control
possible limitations of the projection process and of the fea-
ture space. Users can adjust positioning of groups of fibers in
the feature space to match their position in object space and
propagate those changes to a projection for the full dataset.

The improvement in scalability and flexibility provided by
this work validates projections as a promising tool to explore
complex 3D spaces via 2D feature space representations. For
DTI data this is particularly promising, but the approach can
also be used in any volumetric real or simulated data from
vector or tensor data, in need for new forms of access to
volumetric object space.
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