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Fig. 1. Comparison of taxi trips from Lower Manhattan to JFK and LGA airports in May 2011. The query on the left selects
trips that occurred on Sundays, while the one on the right selects trips that occurred on Mondays. Users specify these queries by
visually selecting regions on the map and connecting them. In addition to inspecting the results depicted on the map, i.e., the dots
corresponding to pickups (blue) and dropoffs (orange) of the selected trips, they can also explore the results through other visual
representations. The scatter plots below the maps show the relationship between hour of the day and trip duration. Points in the plots
are colored according to the spatial constraint represented by the arrows between the regions: trips to JFK in blue, and trips to LGA
in red. The plots show that many of the trips on Monday between 3PM and 5PM take much longer than trips on Sundays.

Abstract—As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis
that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on
a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide
unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But
analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition
to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative
analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data—there are on average
500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics
queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able
to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different
aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable
system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering
strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of
overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and
system enable domain experts to perform tasks that were previously unattainable for them.

Index Terms—Spatio-temporal queries; urban data; taxi movement data; visual exploration

1 INTRODUCTION

For the first time in history, more than half of the world’s population
lives in urban areas. Enabling cities to deliver services effectively,
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efficiently, and sustainably is among the most important undertakings
in this century. While in the recent past, decision makers and social
scientists faced significant constraints in obtaining the data needed to
understand city dynamics and evaluate policies and practices, data are
now abundant. Many cities have started to make a wide range of data
sets available, see e.g., [24, 10, 7]. The challenge now is how to make
sense of these data.

We examine one particularly important urban data set: taxi trips. In
New York City, each day 13,000 taxis carry over one million passen-
gers and make, on average, 500,000 trips—totaling over 170 million
trips a year. Taxi trips are thus valuable sensors of city life. Consider
the plot in Fig. 2, which shows how the number of trips per day varies



Fig. 2. Taxis as sensors of city life. The plot on the top shows how the number of trips varies over 2011 and 2012. While some patterns are regular
and appear on both years, some anomalies are clear, e.g., the drops in August 2011 (Hurricane Irene) and in October 2012 (Hurricane Sandy). In
the bottom, we show pickups (blue) and dropoffs (orange) in Manhattan on May 1st from 7am to 11am. Notice that from 8-10am, there are virtually
no trips along 6th Avenue, indicating the traffic was blocked.

over 2011 and 2012. There is a lot of regularity: the plot lines are very
similar for the two years. For example, on Thanksgiving, Christmas
and New Year’s eve, there is a substantial drop in the number of trips.
But the plot also shows some anomalies. There are big drops in Au-
gust 2011 and October 2012, which correspond to hurricanes Irene and
Sandy, respectively. Looking at the data at a finer grain, other inter-
esting patterns emerge. The maps in Fig. 2 show the density of taxis
across Manhattan from 7am to 11am, on May 1st, 2011. From 8am
to 10am, taxis disappear along 6th avenue, from Midtown to Down-
town; and then, at 10am they reappear. As it turns out, during this
period, the streets were closed to traffic for the Five Boro Bike Tour.1
As we discuss later, other useful information can be discovered by
analyzing these data, from popular night spots and economically dis-
advantaged neighborhoods that are underserved by taxis, to mobility
patterns across regions at different times and days (see Fig. 1).

Like many urban data sets, taxi trips contain geographical and tem-
poral components. In addition, they encode information about move-
ment: a trip is associated with pickup and dropoff locations and times.
A trip also contains other attributes including the taxi id, distance trav-
eled, fare and tip amount, which enable, for example, the study of the
economics of fare structure and optimal fleet size. Not surprisingly,
exploring these data is challenging. We have carried out interviews
with social scientists and engineers that have used this data set in their
research to better understand their needs. Their analyses can be com-
plex and have been greatly limited by the size of the data. Tools that
are commonly used, including R, MatLab, Stata, ArcGIS and Excel,
cannot handle large data sets. This prevents scientists from analyz-
ing the whole data. Instead, they first select small slices and then load
them into these tools for analysis. This process is both tedious and time
consuming. Furthermore, while these tools support complex analysis,
users must be familiar with the underlying languages. For example, in
ArcGIS, users have to construct SQL-like queries, a task that is out of
reach for scientists without database training.

To address these limitations, in this paper, we propose a new vi-
sual query model that supports complex spatio-temporal queries over
origin-destination (OD) data. Users need not be experts in any textual

1http://www.nycbikemaps.com/spokes/five-boro-bike-tour-sunday-may-
1st-2011

query language: they can directly query the data using visual opera-
tions. We show that this model supports a wide range of queries, and
in particular, the three classes of queries in Peuquet’s typology [29]:
identify a set of objects at a given location and time; given a time and
a set of objects, describe the locations occupied by the objects; and
describe the times a set of objects occupied a given set of locations.
This model also supports origin-destination queries that are needed to
explore taxi movement. While visual languages have been proposed
for spatio-temporal data and moving objects, they targeted a different
kind of data—continuous data (i.e., complete trajectories), and made
use of a pictorial language [18, 12]. Instead of requiring users to sketch
queries, our model allows them to directly (and visually) manipulate
the data. The ability to specify queries using graphical widgets and
visualize their results was in part inspired by the seminal work by
Ahlberg et al. [2] on dynamic queries. Our focus, however, is dif-
ferent: we aim to support the exploration of large, spatio-temporal
OD data, and provide visualization services that are both usable and
efficient. Another important feature of our model is that each query
is associated with a set of trips. As a result, not only can queries be
composed and refined, but also query results can be aggregated and
different visual representations can be applied while still maintaining
the spatial and temporal contexts. Query composition also enables the
use of cross-filtered views [37], which is key in our model to support
the query classes in Peuquet’s typology.

We have built TaxiVis, an analysis environment that implements
this model. It combines a number of interaction capabilities that enable
users to pose queries over all the dimensions of the data and flexibly
explore the attributes associated with the taxi trips. Another important
feature of the system is the ability to compare spatio-temporal slices
through multiple coordinated views. Users can interactively compose
and refine queries as well as generalize them by performing parameter
sweeps. To deal with scalability, the system implements a number of
strategies to support interactive response times and the rendering of a
large number of graphical primitives on a map. As discussed in Sec. 5,
these include efficient data storage, and the use of adaptive level-of-
detail rendering to provide clutter-free visualization of the results.

We demonstrate the usefulness of our system through a series of
case studies motivated by traffic engineers and economists whose
needs have driven our design. These case studies show how our model



(and system) enable domain experts to perform tasks that were previ-
ously unattainable for them.

2 RELATED WORK

Analyzing Taxi Data. Recognizing the wealth of information that
can be obtained from taxi data, recently, several efforts have focused
on their analysis. Ge et al. [19] and Yuan et al. [39] proposed rec-
ommendation systems for taxi drivers to optimize the cost of finding
passengers (and therefore reduce gas emission). Pan et al. [26] used
pickup and dropoff information to classify location according to land
use. Veloso et al. [35, 34] used taxi data to study human mobility in
Lisbon. They explored patterns in distribution of pickup and dropoff
locations and the association with the city context. Liang et al. [22]
studied the taxi data from Beijing and reported that the displacement
distribution of taxis follows a different distribution than the majority
of human mobility data. Peng et al. [28] analyzed 1.58 million taxi
trips in Shanghai, and through the use of modeling algorithms, they
concluded that people travel on workdays mainly for three purposes:
commuting between home and workplace, traveling from workplace
to workplace, and others such as leisure activities. Liao et al. [23] de-
signed a visual analytics system to detect anomalies in GPS streams
produced by taxis. They produce a visualization of the stream, apply
an anomaly detection model, and leverage the user interaction to in-
crementally improve their model. These works share an important re-
quirement: the need to perform exploratory analyses. The visual query
model and scalable system we propose have the potential to benefit
such efforts by making it easier to carry out these analyses.
Visualizing Movement. Movement data has recently received sub-
stantial attention in the visualization community (see [5] for a sur-
vey). Much of the work has focused on trajectory data, where the
complete trace of the moving entities is recorded. In contrast, the data
we consider (Sec. 3) is multi-variate OD data [38]: only the start and
end positions are recorded, together with attributes associated with
the movement. Techniques have also been devised to visualize OD
data. Phan et al. [30] proposed a method to automatically generate
flow maps that show the movement between two locations. Wood et
al. [38] proposed OD maps, which encode trips as a set of spatially or-
dered small multiples to avoid occlusion effects that occur when flow
maps are applied to a large number of trips. While these two tech-
niques consider only space, Boyandin et al. [8] proposed Flowstrates,
which takes both space and time into account. These techniques are
orthogonal and could be combined with our model. For example, in
addition to the plots currently supported by the data summary view of
our system (Sec. 5), we could also display a Flowstrate visualization
for users to explore the results of origin-destination queries.
Visual Data Selection and Queries. Data selection is a fundamental
task for querying and visualization. A number of approaches have
been proposed to simplify this task. Ahlberg et al. [2] introduced
the concept of dynamic queries, where queries are specified through
graphical widgets. VIQING [25] allowed users to create selection
queries by directly manipulating visualizations. Heer et al. [21] went
a step further and proposed the use of query relaxation to interactively
generalize selections. Our approach follows in the tradition of these
systems: users can specify selections visually as well as explore the
results through direct manipulation of visualizations; and they can also
generalize queries. Shrinivasan and Van Wijk [32] proposed the cre-
ation of a Select & Slice table during an exploration process to help
cross-tabulate semantic zones (i.e., user-defined data regions) and data
subsets. Using these tables, users can manipulate zones and explore
the relationship between zones and data slices. Another notable effort
in this direction is the Polaris system [33] and its successor, Tableau.
Polaris pioneered a visual model for users to specify queries and visu-
alizations by dragging database column names onto shelves for visual
variables. A distinguishing feature of our model is that the visual oper-
ations were designed to support spatio-temporal queries over OD data.
Note that systems like Tableau were developed to manipulate tabular
data, and thus, they can also support spatio-temporal queries over data
stored in tables. However, specifying spatio-temporal selections and
comparing them in these general systems can be challenging. Another

difference between our model and Tableau’s is that the latter provides
a visual interface for users to construct queries—it does not support
direct querying over the visualized data.

Visual query models have been proposed for spatio-temporal
data [16, 18, 12]. They infer queries from the topology of query
sketches specified by the users. Like our model, these works aim to
achieve expressiveness. However, they have important limitations that
make them unsuitable for our problem. First, they were designed
for continuous spatio-temporal data, i.e., when full trajectories are
recorded. Second, their “dictionary” of visual representations is very
complex—users need to master a number of logic operators and visual
syntax, which negatively impacts usability.

3 DATA AND DESIGN REQUIREMENTS

The New York City Taxi Data. The data used in our study was pro-
vided by Taxi and Limousine Commission of New York City and con-
tains information about all medallion taxi trips in 2009, 2011, and
2012. The raw data came in CSV files with a total size of approxi-
mately 120 GB and contained over 540 million trips. Each trip record
consists of: trip id, taxi id, driver id, pickup location, dropoff loca-
tion, pickup date and time, dropoff date and time, traveled distance,
fare amount, tip amount and toll amount. Taxi and driver ids were
anonymized so as to avoid the linking of records to the actual taxi
medallion and taxi driver’s license. Note that the trajectory of a trip is
not recorded.
Desiderata for Visual Exploration. We have conducted interviews
with a total of five researchers from Economics and Traffic Engineer-
ing departments (2 engineers and 3 economists) from New York Uni-
versity to better understand the questions they want to investigate. We
have identified different kinds of queries the experts want to perform.
They are interested in understanding the dynamics of the city, how
different aspects of the data vary over space and time. For example,
“What is the average trip time from Midtown to the airports during
weekdays?” or “How does the taxi fleet activity vary during week-
days?”. They also want to explore particular events at a given time
such as “How was the taxi activity in Midtown affected during a presi-
dential visit” or “How did the movement patterns change during hurri-
cane Irene?”; and how patterns differ across different neighborhoods,
for example “What is the frequency of taxis in Midtown and Harlem?”.
As they explore the data, they need to freely mix these queries and drill
down from a high-level summary to an individual event.

As in any longitudinal analysis, comparing different data slices is
essential: how patterns vary across space and time, and at different
scales. For example, “How the movement changes between Midtown
and JFK throughout the day, and over different days of the week”. In
addition, they need the ability to quickly test hypotheses. For exam-
ple, starting with a query about a specific neighborhood (“What are the
movement patterns between the Midtown and JFK?”) and then gener-
alizing it to all neighborhoods in Manhattan.

Currently, the analyses carried out by the experts are mostly confir-
matory. They use general-purpose analysis tools such as R, MatLab,
Stata, Excel, and use basic filters and visual tools to verify their hy-
potheses. Since these tools have limited scalability, the experts must
select a (small) subset of the data to analyze. As they identify patterns
and explore hypotheses that need to be tested on other data slices, they
need to go back to the raw data. Not only is this process tedious and
error-prone, but it also prevents them from performing analyses over
the whole data set, or even over a single year. Furthermore, it is hard to
replicate the analyses, to apply an analysis over different data subsets,
and to compare different data slices.

To address these limitations, an important goal of our work is to
unify the two phases of exploration: data selection and visual analy-
sis. We posit that by doing so, domain experts will be able to carry
out both confirmatory and exploratory analyses over the complete taxi
data set. Since these experts do not have computer science training,
the system should be usable and not require knowledge of specialized
programming or query languages. Simplicity must be balanced with
expressiveness: the exploratory system has to be expressive enough to



Fig. 3. High-level architecture of TaxiVis.

support spatio-temporal selection and analysis at different scales both
in space and time, selections over the different trip parameters, and the
ability to refine and generalize queries.

Due to the large-scale of the data, the system should also support
result summarization. Besides giving insights into the data, summaries
can help guide the exploration, including hints about potentially use-
ful query refinements. Furthermore, exploration must be flexible and
allowing users to go back and forth from aggregated summaries to in-
dividual objects.
The TaxiVis System. With these requirements in mind, we have built
TaxiVis, a system for exploring large OD and spatio-temporal data.
A key component of the system is a visual query model that is easy
to use, yet expressive. As we discuss in Sec. 4, the system supports
the query types defined in the Triad Framework [29]. The functional
modules of the system are shown in Fig. 3. Users formulate queries
visually, by interacting with maps and other visual representations.
Internally, a textual query is generated which is then evaluated by
the storage manager. To support spatio-temporal queries at interac-
tive rates, we have built a specialized index based on k-d trees [11]
(Sec. 5.4). Once the results are derived, the system renders them on
the map and users can iteratively refine their queries through visual
interactions. Since result sets can be large, we make use of adaptive
level of detail and density heat maps. (Sec. 5.3). In order to create
these visualizations, additional information such as trip frequencies,
must be computed for each spatial region. TaxiVis makes use of data
filters to generalize this process. In Sec. 5, we describe the system in
more detail.

4 VISUAL QUERY MODEL

Based on the requirements set forth in Section 3, we have designed a
visual query model that aims to achieve a balance between simplicity
and expressiveness. Users specify queries visually and they can iter-
atively refine their queries through direct manipulation of the results.
Below, we present the model and describe how it simplifies the selec-
tion of spatio-temporal slices, and enables both query composition and
result exploration. We also discuss the different classes of queries it
supports. Note that, while this model was designed for taxi trips, it
can be applied to other similar OD and spatio-temporal data.

4.1 Defining and Composing Queries

A key challenge in formulating spatio-temporal queries is selecting
(and refining) the data slices through query constraints. In our model,
queries follow the following template:

SELECT ∗ FROM t r i p s
WHERE <constraints>

Instead of requiring users to write the constraints in the WHERE
clause, they do so through visual operations. In our model, there
are three types of constraints: spatial, temporal, and attribute con-
straints. These constraints span all the variables in the taxi dataset (in
fact, any OD or spatio-temporal dataset). Furthermore, each query is
associated with the set of trips contained in its results. Since each trip
is uniquely identified by the trip id, queries can be composed: users
can iteratively refine queries and further explore results. This has two

Fig. 4. TaxiVis user interface components. (A) Time selection widget,
(B) Map, (C) Tool bar, and (D) Data summary. We can also see an ex-
ample of three distinct queries specified by colors. The orange query
(orange border polygon) represents an atomic query with a spatial sin-
gle region start constraint. The red query (red border polygon) repre-
sents an atomic query with a spatial single region end constraint. The
blue query is a complex query which is the union of two atomic queries:
the polygon with blue border (atomic single region start constraint) and
a directional query (blue arrow).

important implications: it allows the creation of summaries and vi-
sualizations while maintaining the spatial and temporal contexts, and
enables queries to be applied directly to the derived visualizations. To
formalize the process of query composition and properly define query
semantics, we use two types of queries: atomic and complex queries,
which use atomic queries as building blocks.
Atomic Queries. An atomic query consists of a set of temporal,
attribute and spatial constrains. Temporal constraints define intervals
that bound the values of the time range of the query. A temporal con-
straint is specified by an interval [tMin, tMax]. A trip satisfies the con-
straint if trip.pickup time,trip.dropoff time ∈ [tMin, tMax]. It is also pos-
sible to have constraints that bound just the pickup or just the dropoff
time.
An attribute constraint can be expressed using equality conditions (for
categorical attributes) or interval conditions (for numerical attributes).
A trip satisfies an attribute equality constraint associated with a cate-
gorical attribute A if for the given value a, trip.A = a. If the constraint
is associated with a numerical attribute, the trip satisfies the constraint
for the interval [lA,rA] if trip.A ∈ [lA,rA].

Spatial constraints come in two flavors: single-region and direc-
tional constraints. A single-region constraint is defined by a connected
spatial region and is associated either with the pickup location (start
constraint) or the dropoff location (destination constraint). A trip satis-
fies the constraint for region r if either trip.pickup region∈ r (for start
constraints) or trip.dropo f f region ∈ r (for destination constraints).
Directional constraints are used to construct queries about origins and
destinations. A directional constraint bounds the regions associated
with both pickup and dropoff locations. Given source and destination
regions, rsource and rdest , respectively, a trip satisfies the constraint if
trip.pickup location ∈ rsource and trip.dropoff location ∈ rdest .

We define a function called result which takes as input an atomic
query and returns the set of all trip records that satisfy the query con-



straints. The result function determines how queries are evaluated.
Atomic queries can be combined to construct new atomic queries.
Given two atomic queries Q1,Q2, a new query Q3 can be constructed
such that result(Q3) = result(Q1)∩ result(Q2). This is possible due
to a basic property of the query constraints: they are closed under
intersection. This can be easily verified for interval and equality con-
straints, since both are closed under intersection; of course, intersec-
tions can be empty.

For spatial constraints, if they are of the same type (start and des-
tination single regions, or directional constraints) or if one is a single
region constraint and the other is a directional constraint, they can be
combined into a single constraint by reducing (intersecting) the corre-
sponding regions. Otherwise, one must be a single region start con-
straint and the other must be a single region destination constraint in
which case both can be combined in a directional constraint. As we
describe in Sec. 5, this forms the underpinning of the grouping opera-
tion in TaxiVis.
Complex Queries. A complex query is constructed by combining a
set of atomic queries through disjunction. We give meaning to these
queries by extending the result function inductively. Note that an
atomic query is a special case of a complex query, where the query
set has a single element. Then, given two complex queries, Q1 and
Q2, result(Q1 ∪Q2) = result(Q1)∪ result(Q2). In general, given an
atomic query Q it is not possible to find an atomic query Q′ such that
result(Q′) = result(Q)C (the complement of result(Q)). However, it
is always possible to define a complex query Q′ that satisfies this con-
dition. Thus, set theoretic operations can be performed on the result of
complex queries to build new complex queries.
Visual Representation. Fig. 4 illustrates how atomic and com-
plex queries are visually represented in our system. Temporal con-
straints are specified using time-selection widgets (A), and attribute
constraints are defined in a separate view (see Fig. 6). We describe
both of these, as well as constraints defined within the tool bar (C),
in Sec. 5. Here, to illustrate the semantics of the query model, we
focus on spatial views which are defined on the map view (B). Single-
region constraints are defined by polygons and directional constraints
are defined by arrows. The transparent color in the interior of the poly-
gons define the type of the constraint: blue means start constraint, red
means destination constraint (see Fig. 4). The colors on polygon bor-
ders and arrows identify distinct queries (there are 3 queries orange,
red, and blue). The orange and red queries are atomic queries, consist-
ing of only atomic temporal and spatial constraints. The blue query Q
is a complex query, composed by the union of two atomic queries: a
single-region start query Q1 and a directional query Q2. In SQL-like
textual notation, Q1 can be represented as:

SELECT ∗ FROM t r i p s
WHERE trip.pickup time
∈ [05/01/2011,05/07/2011] AND trip.pickup location ∈ R1

where R1 denotes the blue region selected in the map. And Q2:

SELECT ∗ FROM t r i p s
WHERE trip.pickup time,trip.dropoff time
∈ [05/01/2011,05/07/2011] AND trip.pickup location ∈
NYCNeighborhood(’Gramercy’) AND trip.dropoff location ∈
NYCRegion(’Times Square’)

where NYCNeighborhood and NYCRegion are functions that given
a neighborhood name or region name, respectively, returns the corre-
sponding spatial region.

4.2 Exploring Query Results
As described above, atomic and complex queries return a set of trips.
Thus, given a set of queries, such as the ones shown in Fig. 4, other
queries can be applied to their results and different visual representa-
tion can be used to explore them. For example, in this figure, the plot
below the map shows the number of trips returned by each query—
the lines in plot are linked to the queries by their color. In Fig. 1, a
scatter plot is used to examine the duration of trips to the airports at
different times of the day. Other types of visual representations can

Fig. 5. Time selection widgets. The regular time selection widget (top)
allows the user to define an atomic temporal constraint. The recurrent
time selection widget (bottom) allows the user to easily define complex
temporal constraints. In this figure, the widget selects for the years of
2011 and 2012, the period between 9AM and noon in all Tuesdays and
Fridays in the month of September.

be used, including, for example, representations that are specific for
OD data [30, 38, 8]. As we discuss later, these visualizations can be
directly manipulated to visually define attribute constraints and con-
struct refined queries (see Fig. 6). Last but not least, through the use
of multiple coordinated views, query results can be compared side by
side.

4.3 Query Expressiveness
The proposed query model is able to express a rich class of queries.
In particular, it supports queries types in Peuquet’s Triad Frame-
work [29]. Peuquet considered the different components of spatio-
temporal data—space (where), time (when) and objects (what), and
classified the set of questions that are possible over these components.
Below, we describe these questions and how they are supported in our
model.
when + where → what. These queries describe objects that are
present at a given location or set of locations at a given time or set
of times. In our model, they can be constructed in a straightforward
fashion, through the definition of spatial and time constraints.
when + what → where. Given a set of objects and a time or set of
times, these queries return the location of the objects. This can be
achieved by combining time and attribute constraints.
where + what→ when. These queries return a time or a set of times
when given object or set of objects occupied a given location or set of
locations. They can be constructed by combining spatial and attribute
constraints.

Although our initial goal was to support these three classes of
queries, by having separate constraints, our model is able to express
other types of queries, including when → what + where, where →
when + what, and what→ where + when, by simply defining a single
type of constraint.

5 THE SYSTEM

In this section, we describe the system we built to support the inter-
active analysis of the taxi data. It combines the visual query model
described above with other visual operations and representations to
cater to the requirements set forth in Sec. 3.

5.1 User Interface Components
The main view of our system is shown in Fig. 4. Its components and
their role in the system are described below.
Map. Maps serve different purposes in our system. They provide a
canvas for displaying query results, for users to specify spatial con-
straints and compose/refine queries.
Time selection widget. This widget allows users to specify temporal
constraints. As shown in Fig. 5, two widgets are available which we
describe in Sec. 5.2.
Data summary view. The information associated with the results of a
query can be visualized using different representations within the data
summary view. For example, this view can display the selected trips
as time series, histograms, and scatter plots over different attributes.
Since our query model supports multiple sub-queries in a view (rep-
resented by different colors), visualization filters can distinguish their
results. For example, plots can be generated where each line corre-
sponds to one sub-query.
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Fig. 6. Attribute constraints are specified (in the middle) to refine the query on the left. They are shown as dark gray strips on the histogram. The
result of the refined query is shown on the right and consists of a single trip.

Tool bar. Several operations are supported through the tool bar. The
first 3 buttons (from top to bottom) allow users to specify whether
their queries should consider pickups, dropoff, or both. The fourth
button supports the creation of directional queries. The group and un-
group (fifth and sixth) buttons provide a simple mechanism for users
to combine (and split) both region-based and directional queries. The
system can also export query results as a CSV file, which could then
be analyzed using other tools. Lastly, the attribute exploration button
provides a visual mechanism for users to define attribute constraints.
Multiple Coordinated Views. The view in Fig. 4 is used to specify a
set of queries that share both time constraints and attribute constraints,
but with different spatial constraints. By using multiple views the user
can specify other queries with distinct time and attribute constraints
(see Fig. 1). To enable comparison, these views can be synchronized
to show the same spatial region and to synchronize the scale of the
attribute summaries.

5.2 Visual Query Specification
Spatial constraints are specified by polygons and arrows on the map
view. These are created either by brushing or by selecting predefined
polygons corresponding to NYC’s neighborhoods, zip codes, and bor-
oughs. In order to create a single-region spatial constraint, the user
first chooses which parameter is associated with the selection to be cre-
ated by selecting either start/end constraint button (via the toolbar) and
through brushing, the user then creates an atomic spatial constraint.
Selected regions can be moved, edited, and deleted. The user can also
link two regions to form a directional constraint (Fig. 4). Atomic spa-
tial constraints can be grouped to form complex ones. This is achieved
by first selecting the regions and arrows to be grouped and then press-
ing on the merge button in the toolbar (see the blue query in Fig. 4).
Temporal constraints are specified using the time selection widgets:
Regular Selection and Recurrent Selection (Fig. 5). In the Regular
Selection widget, the user defines an atomic temporal constraint by
assigning the values of the start time and end time fields. Using the
Recurrent Selection widget, the user can specify complex constraints
that cover different temporal scales, by selecting an arbitrary combi-
nation of years, months, days of the week, and hours. This widget is
similar to the time wheel in the TEMPEST system [13].
Attribute constraints are defined through the attribute selection view,
which is accessed through the exploration button in the toolbar. As
illustrated in Fig. 6, this view shows histograms that summarize the
attribute values for the trips in the result set of the query shown on
the left. By brushing the desired values or value ranges (the dark gray
rectangles), attribute constraints are derived and added to the original
query. The result of the refined query is shown on the right.

5.3 Query Result Visualization
Rendering Trips on a Map. The spatial component of the query re-
sults is visualized in the map view. Fig. 7 illustrates alternative vi-
sualizations. A basic visual representation for this kind of data is a

Fig. 7. Different spatial visualizations of taxi trips for the week
05/01/2011 to 05/07/2011. In (a) all the trips are rendered To reduce
the clutter, TaxiVis uses both LOD (b) and density heat maps (c). The
system also supports heat maps based on well-defined regions such as
neighborhoods (d). For the latter, summary information about the re-
gion can be overlaid on the map, for example, hovering the mouse over
a neighborhood highlights it and shows the number of trips.

point cloud, where each trip is represented by a pair of points denot-
ing their pickup and dropoff locations. The two points of a pair are
differentiated by color: blue is for pickup and red is for dropoff. For
a small number of trips, this visualization can quickly give us a sense
of how the taxi activity is distributed throughout the city. However, as
the number of trips increases, it gets cluttered very quickly, as shown
in Fig. 5.3(a). This figure contains the points corresponding to all taxi
trips in one week. The point cloud covers almost the entire map, mak-
ing it hard for users to discern what is happening.

To address this issue, our we applied a set of techniques to provide
alternative visualizations to the user. First, as shown in Fig. 5.3(b),
we employ an adaptive level-of-detail (LOD) strategy to reduce the
number of points rendered. Our LOD strategy works by first sorting
all the points based on their spatial coordinates, i.e. their distance from
the equator and prime meridian. We then build a binary tree on top of
the sorted points and perform an in-order traversal to sort them again
based on the visiting order. This is equivalent to building hierarchical
indexing for regular grids on a Z-order curves [27]. In the end, all the
points are arranged linearly in such a way that the first n elements are
also a hierarchical subsampling of size n of the original point cloud.
During user interaction, n will scale proportionally to the map zoom



Table 1. Summary of experiments with data storage strategies.
SQLite PostgreSQL Ours

Storage Space 100GB 200GB 30GB
Building Indices Time 52h 13h 28m

1k-query 8s 3s 0.2s
100k-query 85s 24s 2s

level with n= 1e6 at the finest level. This is also the maximum number
of points that our application would display even if the actual number
of matched records is higher.

Second, our system supports density summary visualizations or
heat maps (see Fig. 5.3(c)) that can be used to show the distribution of
pickups and/or dropoffs in an area. The tool buttons on the right of the
user interface may also be used for selecting which location attribute
(pickup, dropoff or both) is being used for constructing the heat maps.
For example, if both pickup and dropoff locations are selected, both
pickup and dropoff locations would be used for aggregation on each
pixel of the heat map. Such heat map can help answer questions such
as “How often do taxis travel to a particular neighborhood?”. Darker
locations on a heat map indicate a higher level of activity in an area.
Combined with the point cloud LOD, this is a powerful tool to quickly
summarize the data.

Finally, we have also generalized the concepts of heat maps to apply
to grid maps in our system. A grid map is a set of cells where their
geometries and visual representations can be customized by the users.
An example of this is a grid map of zip codes or neighborhoods in
NYC showing the number of taxi pickups (see Fig. 5.3(d)). A heat
map may also be considered as a grid map where its cells are points on
a regular grid and its visual representations are just spherical gradient
textures.
Visualizing and Interacting with Trip Data. Besides displaying
query results on a map, filters can be applied to the results to de-
rive different visual representations. In our current implementation,
we provide support for visual representations that are suitable for the
types of attributes associated with the trips. For example, time series,
histograms, and scatter plots (see Fig. 4, Fig. 1, and Fig. 6). In addi-
tion, as we discussed in Sec. 5.2, these visualizations can be active and
serve as a means to further refine queries.

5.4 Storage Manager
Supporting interactivity is an important requirement of our approach.
Thus, performance was a key factor in the design of our system. We
have experimented with several designs for data storage that can be run
interactively on a single machine. In particular, we have evaluated two
traditional database management systems, PostgreSQL and SQLite,
with the latter being used for in-memory storage. Though both sys-
tems provide extensions for spatial queries, their query performance
is not suitable for interactivity, not to mention the fact that both take
a considerable amount of time to build the spatial indices. For in-
stance, SQLite took 52 hours just to build the indices for a single year
of data. Moreover, a single atomic spatio-temporal query could take
from seconds to tens of seconds to complete, while complex ones such
as those specified by the recurrent time selection widget, can take min-
utes. Another issue with these database systems is their large memory
footprint. In our experiments, PostgreSQL and SQLite used more than
200GB and 100GB of RAM (in memory setup for SQLite), respec-
tively. We deemed them unsuitable for our interactive system because
high memory usage would lead to more paging to disk.

In order to address these issues, we have built a light-weight
database variant that allows fast queries on all attributes including
spatio-temporal constraints. Our implementation is based on a space-
partitioning data structure, k-d tree [11], that treats each taxi trip as
a point in a k-dimensional space. In our implementation, points are
only stored in leaves. Our code takes only 30 minutes to build the in-
dices for the full 3 years of data and uses only 30GB of disk space.
At run-time, the whole data structure, including the data points, are
mapped to the system virtual memory, thus, it may operate in-core or
out-of-core adaptively, depending on the available resources. In our
tests, compared to the database systems mentioned above, our system

Fig. 9. Comparing tips per trip and fare per miles for trips originating in
different neighborhoods in the period of 05/01/2011 - 05/07/2011.

memory usage is considerably smaller, mostly staying at hundreds of
megabytes relatively to the amount of data being explored. This de-
sign has performed within the bounds of the needs of our interactive
system, and queries are significantly faster. In Table 1, we summarize
the results obtained in our our experiments where 1k-query and 100k-
query refer to queries returning approximately 1000 and 100,000 trips
respectively.

5.5 Rendering Considerations
The performance of the map view is also extremely important in de-
livering a good user experience. Thus, selecting a map rendering sys-
tem with both flexibility and efficiency was a top priority in our de-
sign. Different options are available: (1) web-based engine provided
by online map services such as Google Maps, Bing Maps or Open-
StreetMap; (2) 2D desktop-based engines for rendering map tiles from
OpenStreetMap such as KDE’s Marble. Since web-based rendering
engines do not guarantee a consistent graphics acceleration across web
browsers and hardware, it would hinder some of our visualizations
such as the ability to build heat maps on the fly using Frame Buffer
Objects or performing trip animations with OpenGL shaders. More-
over, effectively displaying a large amount of data with the web-based
map API is still a major challenge including where to host the data
and how to render them efficiently. On the other hand, though avail-
able systems in the option (2) solve the compatibility issue and data
transfer, they only support a specific 2D rendering engine. For exam-
ple, in the current KDE’s Marble, rendering has to be done through
the QPainter object of Qt; OpenGL is not yet supported. Unfor-
tunately, the use of OpenGL is required for many of our rendering
layers. Our solution was a combination of (1) and (2): we embed a
web browser as our bottom layer for rendering maps and place other
native visualizations on top of it. In our application, we use Qt and pro-
mote the QGraphicsWebView as our embedded layer. This widget
is placed inside an OpenGL canvas of a QGraphicsView widget,
thus, making it possible for other layers to be compatible with both
Qt’s QPainter and OpenGL native graphics. All geospatial trans-
formations are done in a thin layer above the map view. It should be
noted that the web-based component is only used for displaying maps,
all other rendering is done in OpenGL to maximize the system perfor-
mance.

6 CASE STUDIES

In this section, we present case studies that illustrate both the power
and simplicity of our model and system.

6.1 Investigating Taxi Activity in Different Regions
While analyzing taxi service in a city, it is useful to compare different
geographical areas. In TaxiVis, users can select regions at different
levels of granularity: through free selection, by zip code, and neigh-
borhoods. Fig. 8 shows the how pickups and dropoffs vary over a pe-
riod of one week in four different areas. Here, we made use of group-
ing to analyze the behavior of combined neighborhoods. For example,
we grouped East, West and Greenwich Village (shown in green) as
well as Harlem and East Harlem (blue). By far, Midtown (orange) is
where most activity happens during the week days, followed by the
Upper East Side (red). During the weekends, the situation changes



Fig. 8. Comparison of taxi pickups (left) and dropoff (right) in different neighborhoods over the first week of May 2011. The plots show that Midtown
and the Upper East side are the most active areas. But over the weekend, there is an increased number of dropoffs in Downtown. The figure also
highlights the fact the Harlem is underserved by taxis.

and we see greater activity in Downtown. Note the increase in the
number of trips that starts to happen on Thursday (May 5), with big
peak for pickups on Friday (May 6) in the evening—this indicates that
the nightlife on weekends is very lively in Downtown.

This one-week overview provides an accurate overview of city life,
where people go and when. It also highlights social inequalities. Peo-
ple who live in Harlem have long complained about the lack of taxi
service in their neighborhood. The plot clearly shows that their discon-
tent is well justified. There is over one order of magnitude difference
in the number of trips to/from Harlem compared to other more afflu-
ent neighborhoods. The heat map also shows that while people take
taxis to Harlem, there are barely any pickups there. Exploring other
parameters associated with the trips we found one surprising fact: the
tips per trip originating in Harlem are higher than for the other neigh-
borhoods (see Fig. 9). Further analysis also showed that the fare per
mile is lower for Harlem, and thus, there is less economic incentive
for taxis to be in that area. The higher tips may be a means to reward
drivers that go to Harlem.

6.2 Exploring Movement: Transportation Hubs
Airports and major train stations (i.e. Penn Station and Grand Central)
are key transportation hubs in NYC. By analyzing taxi movement to
and from these locations, we can obtain insights into how people move
into and out of the city. To compare the number of trips originating at
JFK and La Guardia, we select the regions in their vicinity and exam-
ine a 1-week period (05/01/2011 through 05/07/2011). As the plot in
the top of Fig. 10 shows, there are more pickups at La Guardia than at
JFK on most days. Another interesting question is where passengers
go. The choropleth (Fig. 10 top) that highlights NYC neighborhoods,
shows that most people go to Midtown (the darkest region), followed
by the Upper West Side.

By hovering the mouse over a neighborhood, the system displays
the exact number of trips ending in that neighborhood. We can also ob-
tain more fine-grained information about the exact dropoff locations—
the popular destinations, using a heat map.

In order to study the movement patterns for airports and train sta-
tions, we can group them (Fig. 10 bottom) . We select the regions
around Penn Station and Grand Central, and group them using the
Group/Ungroup button (note the two green outlines); we also group
the trips that start at the airports (blue outline). Immediately, the plot
is updated to show the number of pickups in the two regions. Note
that there are many more pickups around the train stations. Another
interesting observation is that the number of trips originating at the
train stations remains roughly constant from Monday through Thurs-
day, and starts to decrease on Friday, hitting a low on Saturday. This
reflects the behavior of many commuters who go to the City during
the week, but not on weekends. Note that, while in this example we
have focused on pickups, i.e., people arriving, it is easy to also study
dropoffs. Starting from the map view shown in Fig. 10, we can simply
select the airport and train regions (by double-clicking on them), and
then click on the “Dropoff” button.

Using the summary view, we can further explore features of the
selected trips. For example, by examining the average cost of trip per

Fig. 10. Comparing movement across NYC transportation hubs. On the
top, we examine trips starting at the two major airports in NYC: JFK and
La Guardia. In the bottom, we refine the query to compare trips starting
at the airports with trips starting at the train stations, Penn Station and
Grand Central.

mile, we can see that it is higher within Manhattan. This provides
an incentive for taxi companies to stay within Manhattan and avoid
trips to the airport. Note that while it is illegal for taxis to reject rides,
this is a common practice when the destination is JFK.2 This problem
is accentuated during rush hour on weekdays, when trips take much
longer (see Fig. 1) and lead to a potential reduction in revenue.

6.3 Studying Behavior over Time

Taxi Demand Patterns. Studying how taxi demand varies over time
can be useful to understand city dynamics. For taxi companies, this
information can help in decision making, both to schedule driver shifts
and maximize profits. To simplify the process of comparing multiple
times slices, TaxiVis provides a time space exploration mechanism.
The user first selects the time slices of interest. This can be done using
the time selection widgets (Fig. 5). In the regular selection mode, the
slices are selected by specifying a time range, a step size (e.g. an hour,
a day, a week), and the number of steps. In the recurrent selection
mode, the list of time ranges is already expressed and generated by
the widget. For example, by selecting 2011, May and Sunday, 5 times
ranges are returned–each corresponding to a Sunday in the month of
May, 2011. Given a list of time ranges, the result of a time space
exploration is a multi-view visualization displaying one map per time
interval, and a data summary view that aggregates the results for the
time intervals. Each map view and plot line is associated with a color
assigned to its time range. This is illustrated in Fig. 11. Here, we
examined all Mondays in May 2011 and May 2012. The number of
trips for the two years is very similar, including the significant drop

2http://cityroom.blogs.nytimes.com/2011/02/24/taxi-panel-focuses-on-
destination-discrimination.



Fig. 11. Time exploration. (a) shows activity for all Mondays in May 2011 and May 2012. Two such Mondays stand out: 05/30/11 and 05/28/12.
Examining the summary plot in (b), we see that the number of trips in these two days is significantly lower than the on other Mondays.

Fig. 12. Taxi activity in Manhattan during the week of Hurricane Sandy. On the day the hurricane hit, there are very few taxis on the streets
throughout Manhattan. On the next four days, activity goes back to normal in all parts of the city, except in lower Manhattan, where there was a
power outage which lasted for five days.

on Memorial Day. The latter indicates that the number of taxis on the
streets could potentially be reduced on the holiday.
Hurricanes Sandy and Irene. The taxi data can also give insights
into the effects of major events. We used the time space exploration to
study taxi activity during the the week of Hurricane Sandy. Fig. 12
shows the taxi trips starting on Sunday, the day before the hurricane,
through Saturday. The heat maps closely reflect the extent of the
disruption caused by this event. On Monday, the day the hurricane
landed, there was a big drop in the number of trips throughout Man-
hattan. On Tuesday, life starts to get back to normal in most regions,
except for Lower Manhattan, where there are virtually no taxis for five
days. This area suffered a major power outage which was only re-
stored on Saturday. We have also studied the period around Hurricane
Irene (see Fig. 13). Note that although activity came back to normal
sooner, on the day of the hurricane, there were virtually no cabs: there
were only 1076 trips, while on average, there are 500,000. This seems
to indicate that although shorter, Irene caused a bigger disruption in
Manhattan.

Fig. 13. Taxi activity in Manhattan during the week of Hurricane Irene.

7 CONCLUSIONS

In this paper, we presented a new system that supports visual ex-
ploration of big origin-destination and spatio-temporal data. A key
component of this system is a visual query model that allows users
to quickly select data slices and explore them. We have shown that
this model attains a good balance between simplicity and expressive-

ness. Another important contribution of this work is the system design,
which not only combines the visual query model with other visualiza-
tion primitives, but also addresses performance challenges that arise
due to the scale of the data. In particular, to support interactivity, we
designed an efficient storage manager as well as a rendering subsys-
tem. We have present a series of case studies, using a large data set
consisting of over 520 million taxi trips in NYC, which illustrates the
capabilities and effectiveness of our system and design decisions.

There are several avenues for future work. Our system has been
deployed to a few domain scientists in our institution and the feedback
has been very positive. We would like to perform a larger usability
study before making it widely available. While our visual query model
is flexible, our first implementation has some limitations. For exam-
ple, there are useful time constraints that cannot be expressed with
the current time widgets. We plan to experiment with alternative and
more flexible widgets both for time and attribute constraint specifica-
tion. In addition, we would like to make the system be completely
web-based, but given the system considerations outlined in Sec. 5, this
is challenging due to the limitations of the existing technology. Our
plan is to remove some of the features to allow for such a deployment,
and add them back as browsers and their APIs get easier to use, more
reliable, robust, and portable. We also plan to add support for other
data sources, for instance, NYC will deploy in spring 2013, the largest
bikeshare program in the world, and the bikes will be GPS-tracked
with the information planned to be publicly available. Furthermore,
our current system relies on user knowledge of the city to make infer-
ences about the patterns on taxi data. We intend to add more context
information about the city so the user is able to correlate the taxi data
with, for example, information about the main business activities in the
regions. Finally, we would like to add more data analysis capabilities
to support more complex analyses.
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