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Abstract—Evaluation methodologies in visualization have mostly focused on how well the tools and techniques cater to the analytical needs
of the user. While this is important in determining the effectiveness of the tools and advancing the state-of-the-art in visualization research, a
key area that has mostly been overlooked is how well established visualization theories and principles are instantiated in practice. This is
especially relevant when domain experts, and not visualization researchers, design visualizations for analysis of their data or for broader
dissemination of scientific knowledge. There is very little research on exploring the synergistic capabilities of cross-domain collaboration

between domain experts and visualization researchers.

To fill this gap, in this paper we describe the results of an exploratory study of climate data visualizations conducted in tight collaboration with a
pool of climate scientists. The study analyzes a large set of static climate data visualizations for identifying their shortcomings in terms of
visualization design. The outcome of the study is a classification scheme that categorizes the design problems in the form of a descriptive
taxonomy. The taxonomy is a first attempt for systematically categorizing the types, causes, and consequences of design problems in
visualizations created by domain experts. We demonstrate the use of the taxonomy for a number of purposes, such as, improving the existing
climate data visualizations, reflecting on the impact of the problems for enabling domain experts in designing better visualizations, and also
learning about the gaps and opportunities for future visualization research. We demonstrate the applicability of our taxonomy through a
number of examples and discuss the lessons learnt and implications of our findings.

Index Terms—visualization, design principles, climate model, taxonomy

1 INTRODUCTION

The ever-growing data deluge has made visualization an impor-

tant medium for intuitively portraying and communicating complex
information, cutting across various disciplines like life sciences,
businesses, journalism, etc. However, creating visualizations demands
significant time and effort, which often creates a bottleneck for domain
experts [19]; and creating effective visualizations requires knowledge
about visualization design principles and best practices. However,
there has been little work on systematically judging the quality of
visualizations used and created by non-experts in the field. While
authors like Tufte and Few [17], [48] have critiqued visualization
examples and offered guidelines for better design, very few academic
attempts exist for classifying types of design problems and judging
their consequences, especially when domain experts design visualiza-
tions.
To fill this gap, we performed a systematic analysis of how climate
scientists use and design visualizations for reflecting upon the causes
and effects of design problems. The data that we analyzed comprises
of a series of semi-structured interviews with climate scientists, about
visualizations collected from research papers and presentations.

The benefits of such an exploratory study are two-fold. First, it
allows domain scientists to better critique their visualization designs
and incorporate that knowledge into building more effective visual
representations. Second, reflecting on the analysis of visualization
design problems is an opportunity for the visualization community to
investigate how the state-of-the-art in visualization meets the analysts’
needs, and introspect how design principles can be better applied to
suit the evolving complexity of data presentation and communication.
We know of only two precedents in the visualization community that
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aimed at examining the cross-domain synergistic capabilities [16],
[42]. In our work we take one step farther by judging how well domain
experts and visualization researchers agree on design problems, based
on which we redesigned some of their existing visualizations and
judged the effectiveness of the solutions from their feedback.

In our study, we focus on an important area of climate data
modeling, that is comparison of terrestrial biospheric models. Inter-
comparison of output from the multiple terrestrial biospheric models
is a key research area that helps understand the spatial and tempo-
ral patterns of carbon sources and sinks (e.g., photosynthesis and
respiration) which serve as important feedback into global climate
change indicators. Typical visualization usage and design by climate
scientists for such comparisons is shown in Fig. 1. Fig. 1a) shows the
use of scatter plot for comparing model output variables for multiple
models. Fig. 1b) shows the use of multiple maps for analyzing
similarity of models over different spatial regions. The challenges
for concise visual representation in these cases is non-trivial because
of the underlying diversity and complexity of the data. The aim of
this exploratory study was to find, for these complex analysis tasks,
what are some recurring design problems. While we also found some
examples of optimal visualization designs, our goal in this work was
not to comment on the general state-of-the-art in visualization practice
in climate science, but to focus on the problematic visualization
designs and devise a model for describing those problems.

Our high-level analysis questions for understanding visualization
design problems were: do the chart types address the goals of visual
representation? Are there design flaws specific to those chart types or
are there generalizable problems cross-cutting chart types? Does the
literature of visualization design offer solutions to those problems?
We collected a representative sample of 15 research papers from
our collaborators that used visualizations for comparing terrestrial
biospheric models. The over-arching goal was to create a taxonomy
that systematically answers the aforementioned analysis questions. In
summary, the contributions of this paper are three-fold:

1) A systematic classification of visualization design problems in
the climate science domain resulting in a descriptive taxonomy
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(b) Design problems in the multiple maps stemming
from poor encoding of relative similarity.

Fig. 1: Illustrating two common visualization use case scenarios
and their associated visualization design problems, for comparing
terrestrial biospheric models (figures adapted from [25]) In a) stacked
scatter plots with multiple visual symbols lead to an ineffective
visual search for models and inefficient comparison of spread among
their output variables. In b) outliers indicated by red regions are
clearly visible but similarity analysis among 17 different maps is
difficult without any encoding that reflects relative similarity among
the models.

of types, causes, and implications of such problems.

2) Application of the taxonomy for: i) identifying problem con-
sequences and their trade-offs, ii) a detailed analysis of causes
of matches and mismatches about design problems between
visualization experts and climate scientists, and iii) feedback
on redesigned solutions for a representative sample of problem
instances.

3) Summary and analysis of the findings for enabling scientists in
designing improved visualizations, and for reflecting on the gaps
and opportunities for visualization research.

2 ReLatep Work

We discuss the related work with respect to the existing studies on
visualization usage and design, and the relevant theoretical models
that have been proposed for characterizing the visualization process
and design.

2.1 Studies on Usage and Design of Visualization

In recent times, there has been some progress towards studying
how people outside the visualization community use, design, and

reason about visualizations. This body of research is critical in
diversitying the field of visualization by gaining insight into the
potential roadblocks that people from different communities face,
while designing perceptually effective visualizations and subsequently
using the interpretations for their benefit.

To this end, Grammel et al. attempted to understand how people
who are unfamiliar with visual data analysis, i.e. InfoVis novices
construct visualizations and the potential roadblocks in doing so [22].
They found that constructing effective visual mappings was the most
significant roadblock, which was consistent with the findings of Heer
et al. [23]. Somewhat related to this, researchers [30] studied the
problems low-literacy users face while retrieving information online,
and how interactive visualization can help in the process. Researchers
have also explored the problem [12] from the point-of-view of existing
visual analytics tools: they found that while conducting investigative
analysis, several roadblocks exist in understanding, choosing, using,
and reading views properly. Some of the studies also focus on
collaborative environments. Walny et al. [52] studied how pen and
touch interactions on interactive whiteboards facilitate reasoning and
understanding of visualizations. Most of these studies focus on the
usage patterns of visualizations for novice users. In our work, the
focus is on domain experts who have compiled the data to specifically
address their research questions but who do not have detailed expertise
to design the most effective visualizations. There is a lack of studies
that look into the types of problems that arise when domain experts
design visualizations.

2.2 Models Characterizing Visualization Process and Design

Among the many theoretical models that exist in visualization, the
ones that are relevant for our work fall into two broad categories:
i) models which characterize the visualization process, starting from
data transformation to human perception and cognition, and ii) models
that capture the different aspects of a visualization design and its
implications, especially from an end user’s perspective. One of the
earliest instances of a process model, was the data-state reference
model proposed by Card [9], which was later extended by Chi’s
pipeline model [11] for representing different data transformation
stages and the intervening operations. This was further extended by
Ware [53] whose model focused more on the visual representation
and its perceptual implications. For the visualization design models,
we find instances where researchers have studied the use and creation
of visualizations from a designer’s point of view [38] or as the product
of a collaboration between designers and end users [54]. Heer et al.
[23] proposed a model for providing guidelines to novice users on
the encoding type used. We propose a taxonomy model, which is
similar in its characteristics with the visual uncertainty model [14]
that combines both visualization process and design in one holistic
framework. The functionality of our model is similar in spirit with the
work of Walny et al. [51], who generated a taxonomy by studying
how visualizations on white boards are typically produced, what
their purposes are and how people from outside the visualization
community use visual thinking for solving their problems.

3 How CuiMaTE ScienTists Use VisuALIZATION

Our collaborators are climate scientists specializing in Terrestrial Bio-
sphere Models TBMs). As visualization researchers we have worked
closely with them in the Multi-Scale Synthesis and Terrestrial Model
Intercomparison Project (MsTMIP) as part of the DataONE Scientific
Exploration, Visualization, and Analysis (EVA) Working Group. In
this section we describe briefly what domain-specific problems they
aim to address by designing visualizations.

TBMs simulate terrestrial ecosystem processes and the terrestrial-
atmosphere carbon exchange in relation to prescribed boundary condi-
tions: vegetation cover, soil properties, climate, etc. They have become
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Fig. 22 Workflow for our qualitative study comprising of seven different stages as annotated in yellow. The workflow highlights the
tight interaction with climate scientists that led to the taxonomy of design problems, its subsequent refinement and application for finding
solutions. The problems and solutions were further analyzed and reflected upon for providing general design guidelines to domain experts and

highlighting lessons learnt for visualization researchers.

an integral tool for extrapolating local observations and understanding
to much larger terrestrial regions, as well as for testing hypotheses
about how ecosystems will respond to changes in climate and nutrient
availability [25]. TBMs use complex analysis scenarios and generate
diverse and large volumes of multidimensional data. Visualization
thus constitutes an integral component of most model output analysis
processes not only for understanding and representing the data, but
also for subsequent dissemination of the scientific knowledge. Visual
representations in the form of images and charts used in academic
publications and presentations play a critical role in communicating
the scientific findings to a broader community.

A key approach for environmental modeling is to use multi-
ple models as a way to gain confidence in the results and bound
understanding. Therefore, inter-comparison of a suite of terrestrial
biospheric models over space, time, and different land cover types is
an important research area. But the volume and complexity of model
outputs present many challenges for analysis and visualization.

To gain additional confidence in model output, researchers com-
pare observations with model simulations in a benchmarking activity.
Furthermore, modelers want to know which models are similar, and
why, when, and where they are similar. Linking model structures with
model output can be used to understand why models are different
from benchmarks and each other. Visualization plays a crucial role in
all of these steps for understanding model characteristics and visually
representing the scientific findings.

4 MeTHODOLOGY

The goal of our study was to diagnose design problems in visualiza-
tions created by climate scientists. While in course of our research
we also discovered visualization examples which adhered to the best
practices (Fig. 3), our aim here was to focus exclusively on the
causes and consequences of the problems. We followed a descriptive
approach where we could provide useful guidelines for climate scien-
tists and discover challenges for visualization researchers. To achieve
this purpose we adopted a qualitative methodology featuring in-depth
analysis of climate visualization examples, generation of descriptive
classifications schemes, as well as multiple interviews, workshops,
surveys, and focus groups. In the following section, we describe our
methodology in details.

4.1 Participants

In the course of our project we collaborated with 20 climate scientists,
with 5 of them being direct collaborators from the Multi-Scale
Synthesis and Terrestrial Model Inter-comparison Project (MsTMIP).
Most of them have over ten years of experience in climate modeling.
The overall goal of MsTMIP is to provide feedback to the terrestrial
biospheric modeling community to improve the diagnosis and attri-
bution of carbon sources and sinks across regional and global scales.
Our group of collaborators were mostly climate modelers working
as part of the Exploration, Visualization, and Analysis (EVA) working
group under the DataONE initiative; and they spanned across different
national labs and universities within the United States.

With our direct collaborators, we interacted over a six month
period via semi-structured interviews, which were both in-person and
through teleconferences, and three workshops where we exchanged
knowledge about our respective domains and conducted interviews.
With the indirect collaborators, we attended their presentations at
workshops, took note of their visualization design and received their
feedback on our findings through teleconferences.

4.2 Evaluators

The group of evaluators (henceforth referred to as we) who were
involved in data collection, analysis, and synthesis; comprised of
four data visualization experts (all co-authors of the paper): one
doctoral student, one research scientist and two faculty members. All
the evaluators have at least four (and for two of them more than
ten) years of research and practical experience in visualization. The
coding part of our work loosely follows the tradition of expert-based
evaluation of user interfaces like heuristic evaluation, where it has
been demonstrated that a small number of experts can reliably detect
most of the problems [36].

Also, following-up on the same tradition, rather than relying
exclusively on the personal judgment of the evaluators, we created
guidelines and support material to inform and guide their work. Since
a single established set of visualization heuristics does not exist yet,
we decided to: 1) review the few initial attempts to create visualization
heuristics we found in the literature ( [18], [S5]). and ii) create our
own synthesis of visualization principles drawn from the visualization
design and research literature. We provide more details about the
synthesis of visualization principles in Section 4.5.

4.3 Workflow and Goals

The workflow we adopted for our exploratory study is outlined in
Fig. 2 and is characterized by seven distinct stages we performed to
gather the necessary data and perform our research.

In (1) Data collection we interacted with our collaborators,
through in-person meetings and teleconferences to collect visualiza-
tion examples and intents that are representative of the typical tasks
performed by the climate scientists. In (2) Synthesis of design prin-
ciples we reviewed the existing literature on visualization design prin-
ciples and organized them into a reference list we used to inform and
guide our critique of visualization examples. In (3) Coding we used
the reference list to manually annotate the collected examples and
generate descriptive codes that captured potential design problems. In
(4) Taxonomy generation we systematically and iteratively refined
and organized the codes to generate a design problem taxonomy. In
(5) Problem matches and mismatches we discussed representative
examples of the collected design problems with the climate scientists
to gather instances of diverging opinion between visualization experts
and the domain experts. This phase allowed us to refine the taxonomy
and to build a much richer view on how visualization design principles
can and should be instantiated in practice. In (6) Solution Redesign,
based on the suggestion of our group of collaborators, we extended
our analysis to include discussions of solutions. We redesigned some
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Fig. 3: One of the few examples of optimal visualization design
from our collected examples [45]. where the intent was effectively
captured and communicated. Here small multiple line charts are
used effectively in conjunction with maps for showing region-wise
temperature variation of two classes of climate models.

selected examples and gathered additional feedback from the scien-
tists. Finally, in (7) Guidelines and lessons learned we reflected on
the output generated by our analysis and interactions and came up
with a set of general guidelines, pitfalls and lessons learned.

For data collection, the qualitative analysis of the examples,
and the following derivation of a design problems taxonomy; we
followed the grounded theory methodology [10]. Grounded theory is a
systematic methodology used in social sciences to derive classification
schemes from the analysis of large quantities of qualitative data and
guides the researchers through iterative phases of data collection,
code generation, and their organization into descriptive categories.
This approach recently gained some momentum in the visualization
research community and it has been successfully adopted in a growing
number of studies to analyze visualization artifacts and their use
in real-world scenarios [24], [26], [43], [47], [51]. This method-
ology allowed us to critique and analyze visualizations created by
scientists without any pre-formed hypothesis, thereby allowing the
data to dictate the taxonomy that emerged. The aspects we imbibed
from grounded theory were alternating between data collection and
analysis, refining the conceptual relationships within the data, and
subsequent generation of a theoretical paradigm for structuring our
findings.

4.4 Data Collection

During our data collection phase we first interacted with the climate
scientists to generate a representative sample of visualizations to be
used for our analysis.

Visualization Examples. The visualization examples were collected
in consultation with our collaborators, from a set of 20 presentations
in two workshops, 15 research papers from the climate science
domain and four interview sessions. Our effort was to ensure that the
collected sample represents the state-of-the-art in visualizations used
for comparing climate model data. From these sources we generated
a total of 105 images which we used as the basis for our study. Given
the high experience level of our collaborators we were confident
from our interactions, that these images constituted a representative
sample for our study. Among the examples we collected, 80% of
the visualizations comprised of geographical maps, scatter plots and
variants of line charts. The remaining 20% was a heterogeneous set of

examples which could not be organized into any consistent group
or description. For this reason we decided to exclude them from
the analysis and focused on 80% consistent group of images, which
comprised of 40 line charts, 30 geographical maps and 15 scatter
plots.

Visualization Intents. In a preliminary coding pass we realized it
was hard to judge the collected examples without first knowing the
visualization intents. Rather then evaluating the collected example
exclusively under an abstract set of principles, we preferred to ground
our analysis on the following main questions: Q1)“Does the chart
represent the intent correctly?” Q2)“Does the chart convey the main
message efficiently and effectively [34]?” These high-level questions
guided the latter stages of the evaluation pipeline, such as the synthesis
of design principles and coding.

As we felt we could not derive the intent and message of every
single example without the help of our domain experts, we conducted
surveys and teleconferences to come up with a more reliable set
of intents. To achieve this purpose we performed the following
steps: i) two investigators formed an initial idea of the intents from
the descriptions in the collected material and collected them in a
document containing pairs of images and intents; ii) we distributed
a survey with the intents to a group of 2 scientists asking them to
mark whether they agreed or disagreed with the stated intent and to
add their own version of the intent where necessary; iii) for those
cases where the scientists disagreed (with us or between them) we
performed an interview session for further clarification and collected
the right intents.

This phase was crucial in understanding the motivation and context
behind the creation of the visualizations. In some cases, we initially
misread the intent, which was subsequently clarified in these interview
sessions. For example, as shown in Fig. 1(a), we initially deduced
that the initial intent was to identify the models which showed high
or low values for the carbon flux output variables NEP, GPP, Rh
(organized vertically in the three stacked panels). But in an interview
session it was clarified that the primary intent is to show the overall
variability of prognostic (green) and diagnostic (purple) models and
also to show the which models belonged which eco-regions for the
different variables.

An analysis of the collected intents showed that in the context of
the climate model inter comparison, the general intents of scientists
were mainly to identify similar models and compare their spatial or
temporal variability over different granularity of space and time. In
previous work, we had designed an interactive interface that helped
scientists realize these intents through a rich exploratory visualization
tool [37]. In this work, we judged the design problems of the static
visualizations with respect to these intents.

4.5 Synthesis of Design principles

The basis for the judgment of design problems in the examples we
collected was the rich literature of visualization design principles
that have evolved over time. While we observed that there is no
single conceptual framework which can be applied for such analysis,
various theoretical principles, starting from Bertin’s seminal work,
to the most recent research on information graphics, have guided
visualization design over the years. These design principles come
from different areas of visualization research, and address different
but often complementary issues such as: principles for optimal visual
design, criteria for design based on data type, matching the visual
properties to best support human perception and cognition, and also
more recently, how best to communicate the message by properly
structuring the information. All these categories subsume the two
general questions Q1 and Q2 on which we eventually based our
judgment of the visualizations. Before starting the coding phase, we
worked on collecting design principles and synthesizing them in a way
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Fig. 4: Different levels in the design problem taxonomy. Problems are categorized according to the stage in the visualization pipeline,
the type and the cause. The leaf nodes for problem cause are shown in Figures 5 and 7. The most frequently occurring problems were the
visual variable problem (37% cases), communication gap (30% cases), and clutter (29% cases); followed by color map choice (28% cases) and
distortion (20% cases). Some of the less frequent problems were level of detail (17% cases), comparison complexity (15% cases), and chart

appropriateness (13% cases).

that codes based on those principles could be used for the study. Note
that these principles were applied only in the context of the scientists’
intents for any visualization. Here, we provide a brief summary of the
main sources we used to inform our research.

Optimality of design: From Tufte’s seminal work [48] and Tukey’s
research on statistical graphics [49] we adopted the principles of
graphical excellence and integrity. Graphical excellence encompasses
a number of criteria for design by maximizing the the datafink ratio
(i.e., information and data density) and avoiding accessory elements
and embellishments. Graphical integrity refers to a truthful representa-
tion of the data (related to Q1) for avoiding potential misinterpretation
due to scaling issues or distortion.

Criteria for design based on data type: From the early work of
Mackinlay [34] we adopted the criteria of expressiveness and effective-
ness to qualify visualizations in terms of the encoding parameters and
degree of salience of visual attributes. From Bertin’s seminal work [3]
we derived principles of effective visual encoding of data features into
visual variables. We also considered the work of Card et al. [8] and
MacEachren et al. [33] which revise and extend the early of work of
Bertin respectively in information visualization and geo-visualization.
These enabled us to judge the appropriateness of the visualization
parameters (related to Q1) based on the data type they represented.
Perceptual Implications of Design: Bertin’s seminal work on vi-
sual variables such as position, size, shape, color, orientation, and
texture; formed the most important basis of our judgment of the
appropriateness of the design parameters. Bertin focused on defining
the possible visual variables and reflected on their perceptual impli-
cations for visualization design. The work of Bertin was extended by
Cleveland and McGill [13] and Ware [53], who provided much needed
empirical evidence of the perceptual effectiveness of visual variables
through controlled user studies. Together with Bertin’s work, such
experimental research form the core of the science of visualization.
For addressing Q2, we utilized the following concepts inspired from
these threads of research: the importance of visual encoding keeping
pre-attentive processing in mind, ranking of visual variables based on
different tasks, perceptual effects and properties of color, importance
of spatial organization of visualization design, etc.

Design for more effective visual communication: Finally we also
considered recent approaches from data visualization practitioners.
These mainly address the concern of how visualization should not
only support exploration and analysis, but should also be able to
visually communicate the data. For addressing Q2, we utilized design
guidelines from Stephen Few’s book “Show Me the Numbers” [17]
and from “The Functional Art” [7] a data narrative-oriented book
written by data journalism expert Alberto Cairo.

4.6 Coding

In the coding phase we analyzed all the image instances for potential
problems with respect to the visualization intents that were collected
in the initial phase. The codes we used for describing the problems

were based on our synthesis of design principles. For each example
we collected codes describing design problems and relevant issues.
For instance, the scatter plot example shown in Fig. 1(a), was coded
with: clutter, chart selection, and color map. Wherever more clarity
was needed, we resolved our doubts by asking further questions to the
scientists. We met at regular intervals to share, compare, merge and
refine the set of codes and after several iterations we reached a stable
set. Halfway into this process, during our discussions we realized
design problems sometime have non-trivial solutions. For this reason
we started collecting, together with problems, descriptions of design
consequences and their trade-offs, which are presented in Sections 5.3
and 8.

4.7 Generating a Taxonomy of Design Problems

After collecting the codes we moved to the axial and selective coding
[10] phase where we merged, grouped and structured the codes into a
full taxonomy. During this phase we went through several refinements
by having one of the investigators mainly working on the classification
scheme and another investigator testing the scheme with the library
of examples, while discussing inconsistencies collaboratively. We
stopped the process when we felt that we reached a stable and
satisfactory description of all the problems.

One of the issues during this phase was to choose an agreed
upon level of abstraction for categorizing the design problems. For
this we used a bottom-up approach by analyzing which problems
are similar in terms of: which stage of the visualization process they
were introduced and what effect they had on the visual representation.
Accordingly we came up with a three-level taxonomy, that helped us
categorize the causes and implications of the problems.

5 Taxonomy oF DesiGN PRoBLEMS

The taxonomy we have derived is a classification scheme where a
visualization example can be associated with multiple design prob-
lems that are described by different nodes of the taxonomy tree.
For deciding a classification that captures the causes and effects of
design problems, we took inspiration from the taxonomy of visual
uncertainty [14] based on the traditional information visualization
pipeline [11]. The latter can be regarded as a communication chan-
nel [44] and thought of being composed of two distinct phases:
encoding, that is associated with mapping the data on to the screen-
space; and decoding, that is associated with perceptual and cognitive
processes on the user’s side. The classification scheme, based on
encoding and decoding stages as the first level, enables us to sys-
tematically analyze different dimensions of the design problem. The
levels are described below:

i) Problem Stage: The first level decides whether it is in the encoding
or the decoding stage that a design problem is found. Encoding deals
with problems that mostly depend on the choices the designer makes
when deciding how to transform data features to visual features.
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Fig. 5: Design problems found at the encoding stage of the visualization pipeline reflected how well the input parameters such as chart
type, visual variables, level-of-detail and color map were chosen by the scientists. Darker color at the lowest level indicates higher frequency
of a particular cause (e.g. Choice) within a problem type (e.g. Visual Variable problem).

Problems on the encoding side enable us to address if the encoding
strategy (e.g., chart type, visual variables, color map) is based on
visualization best practices. Decoding captures design problems that
go beyond the specific scope of visual encoding and the deliberate
encoding choices a designer makes. These problems may be due to the
effect of the limited screen resolution, perceptual implications of the
visual parameters and auxiliary elements (grids, legends, annotations).
They mainly affect the effectiveness with which the user can decode
the presented information.

ii) Problem Type: An encoding problem or a decoding problem can
be classified into multiple types, depending on the characteristic of
the problem. The type level separates the encoding and decoding
problems into different classes, which encapsulate the low-level
causes of these problems. The classes belonging to the encoding
side reveal the gaps in fulfilling the necessary conditions for a good
encoding. For example, it could reveal if the chart type and visual
mapping were appropriate. Fulfilling the necessary conditions for a
good encoding might not always be sufficient for a visualization to
be useful. The classes belonging to the decoding side reveal if the
necessary conditions were also sufficient, by revealing if there was
too much clutter, or if the there was distortion of information or the
visual complexity was too high.

iii) Cause of problem: This is the level at which leaf nodes of the
taxonomy tell us the precise cause of the problem. These causes reveal
the low-level details of the problem types. For example, from this
level we know the causes of a color map problem or the causes of a
distortion problem.

5.1 Encoding Problems

The encoding side of the taxonomy helps us ask questions such
as: “Do the encoding parameters such as chart selection reflect
the intent?”, “Can the visual mapping and color map choice be
improved?”, “Given the intent, is the data shown at an appropriate
level of detail?” In this section we describe the causes of design
problems during the encoding stages (Fig. 5).

Chart appropriateness: The first design decision that the scientists
have to make for reflecting their intent, is which chart type to use.
The chart appropriateness issue deals with whether the charts selected
by the scientists appropriately reflected their intent. For judging this
problem, we analyzed if any inherent limitation of a chart type, or
the resulting configuration of the visual representation interfered with
the intent. The two causes for the appropriateness problem were as
follows:

Mismatch Mismatch captured cases in which the chosen visual
representation was not the best option for conveying the intent due
to its inherent limitations. This issue was observed mainly in scatter
plots.

For example, one of the intents in the scatter plot in Fig. 1(a) was
to find which models belonged to which eco-regions. The author
attempted to convey this intents through a variant of a traditional
scatter plot, where the X-axis represents a categorical attribute (the
eco-regions) rather then a numeric value, as is usually expected. This

unexpected configuration created confusion among the scientists and
made the chart difficult to interpret. A scatter plot is unable to clearly
show the models that belong to a particular eco-region due to over
plotting. An additional problem is the use of the many different
symbols for representing each model, which leads to an inefficient
conjunctive visual search. In Section 7 we discuss a solution to this
problem.

Configuration: Configuration problem deals with the arrangement
of multiple charts in a common canvas. We found several examples
where scatter plots, line charts and maps were stacked together for
comparing climate model behavior. This can be observed in Fig. 6.
The intent in this case was to compare the temporal variation of annual
cycles. But the horizontal stacking of the line charts, where time was
represented on the X-axes, made it difficult to compare the Y-axis
values. This problem was also observed in Fig. 1(b) where multiple
maps where stacked together without any ordering based on similarity.

Visual Variable: Visual variable problem captures cases in which
the designers made poor choices in the mapping data attributes to
visual variables. This is one of the most important design decisions in
the visualization process [3], [8]. Since the number of data attributes
generally outnumbers the number of visual variables (position, shape,
size, color, orientation, etc.) by far, effective utilization of the latter
is crucial in designing effective visualizations. The two causes for the
visual variable problem were as follows:

Choice: The choice of visual variables was one of the leading

causes of problems we found in our collection. While the choice
affects all the subsequent visualization stages of human perception
and cognition, here we focus on how visual mapping can “above
all show the data” as suggested by Tufte’s principle of graphical
excellence [48]. The different classes of problems due to choice of
visual variables were: representation of discrete data attributes in
scatter plots and line charts using a combination of visual variables,
and use of color as a quantitative channel for comparing averages and
differences on geographical maps.
For example in the scatter plot in Fig. 1(a), one of the main prob-
lem was the representation of discrete data attributes, i.e. climate
models, using visual variables such as shape, texture, and orientation
concurrently. The use of multiple symbols causes conjunctive visual
search [53] which is inefficient and not a good use of the pre-attentive
capabilities of the human vision system. Moreover, combination of
shape (different symbols), texture (filled and unfilled shapes), and
orientation (triangles pointing in different directions), do not adhere
to the rule of integral and separable visual dimensions [53]. In line
charts, a recurring problem was the use of dots, solid lines, and dotted
lines which would create difficulty in recognizing and tracing the
different items.

Ambiguity: Another category of problems with visual variables,
was ambiguity, where the use of visual variables was inconsistent:
either different visual variables were used to represent the same data
attribute, or the same visual variable was used to represent different
data attributes. While the choice of visual variables reflects how well
the latter reflects the different data properties, ambiguity reflects if
even after a correct choice was made, there were additional inconsis-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, MONTH 20XX 7

n

R (Wm?)

Fig. 6: Problems due to clutter: color mixing, visual variable
problem: ambiguity, and chart appropriateness: configuration
The intent behind this multiple line chart figure [27] is to enable
readers to analyze the variation of annual cycles over time in terms of
the ensemble mean, the standard deviation and the individual values.
It is difficult to compare temporal trends due to the side-by-side
placement. Color mixing among the lines causes clutter.

tencies. For example, in the line chart example in Fig. 6, there are only
a few different colors used for representing the different categories. It
almost seems there is a relationship among them, although none is
explicitly mentioned in the text. The same problem was observed
in maps, where a white or grey was used to represent two different
factors: absence of data and lack of correlation among values that are
represented. As evident ambiguity can lead to misinterpretation of the
data where a relationship can be deduced even if there is none and
if there are multiple relationships, only one of them might have been
conveyed.

Level-of-Detail: For the visual encoding of data attributes, it is
important to choose an appropriate level-of-detail that would not
only preserve the fidelity of the data as much as possible, but also
effectively communicate the intent. The two causes of the level-of-
detail problem were as follows:

Granularity: This problem was observed in cases where either
a coarser or finer granularity level could better reflect the intent.
For example, a recurring issue with the maps was that pixel-based
representation was used for mapping quantitative variables and en-
abling model comparison. While this led to high fidelity, comparison
across multiple maps was difficult because of the low-level details that
readers had to classify and compare. As shown in Fig. 1(b), this would
be inefficient as the lowest level of granularity would not facilitate a
high-level overview of the salient patterns. It would instead cause a
sequential search for finding similarities and dissimilarities among the
maps.

Jaggedness: A special case of the level-of-detail problem was the
jaggedness of the lines in case of line charts representing time series.
The salient peaks and crests in the time series were occluded because
of the jaggedness. The main source of the problem was the tendency
of the scientists to plot daily or monthly data, even when the intent
was to show the annual variability of any given entity. In those cases
smoothing could be used by computing an average and that would
highlight the main trends. In the redesign section (Section 7), we
present a line chart example (Fig. 12) that shows these jagged patterns.

Color Map: Choosing an appropriate color map is essential for
the effective display and analysis of data. Based on fundamental
human perceptual principles and the type of data being displayed
(sequential, diverging, or categorical), there are formal and systematic
ways to make an appropriate color choice based on the task at hand.
Color maps for quantitative attributes are important for making an
accurate judgment, while those for qualitative attributes are important
for distinguishing among different categories efficiently. Since the
implications of these two types of color maps are different, we treated
these two problems separately:

Quantitative mapping: For quantitative color maps, the rainbow
color map was used in most cases. As extensively documented in
the visualization literature [5], [40], the lack of perceptual ordering
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Fig. 8: Problems due to chart appropriateness: mismatch, distor-
tion: scale inconsistency, comparison complexity: superposition
overload, communication gap: legend, annotation. The intent in
this figure [29] was to compare the errors of two plant functional
types (DBF, EVG), color-coded in green and blue, and quantified in
two ways: NRMSE and Chi-Sq. The X-axis in all three scatter plots
represent the Ch-Sq statistic. It is hard to separate the patterns between
the two functional types: a regression line and annotation of key trends
would more clearly communicate the message.

and isoluminance in case of rainbow color map can cause inaccurate
interpretation of the data. It has also been shown in case of scientific
data, the crucial role that a perceptually motivated color map plays,
for example in case of diagnosing heart conditions [4]. From the
examples we collected, geographical maps suffered from this problem
the most. In many cases we found that scientists are only interested
in recognizing the extreme values, and the colors red and blue are
associated with the semantics of temperature: red signifying hot
regions and blue signifying cooler regions. But in many of those cases,
all the hues of the rainbow are used for encoding the data. A divergent
color map with only a luminance variation [6] would be appropriate
in that case.

Qualitative mapping: For qualitative color maps, the problem was
when representing discrete variables with color (Fig. 12). If the hues
are not separable enough, visual search for the variables would be
inefficient. We found that it is a common requirement for the climate
scientists to represent more than 10 discrete variables (in the form of
regions or climate models) in a single chart. If color is the chosen
visual variable, the choice of hue then becomes critical. The Tableau
20 color palette can be used in that case. ColorBrewer [6] only offers
about 11 distinct colors.

5.2 Decoding Problems

Once the encoding parameters are chosen in the design process, to the
judge the quality of the visualization, we have to judge its perceptual
implications. Analysis of problems at the decoding stages of the
visualization, that is the perception and cognition stages, enables us
to evaluate a visual representation by asking questions such as: “Is
it perceptually confusing?” “Does it represent the patterns without
distorting it or being too complex?” “Does it emphasize the intended
message clearly enough?” In this section we describe the problems
caused during these stages of the pipeline (Fig. 7).

Clutter: We adopt the definition of clutter which relates the degra-
dation of a display with the number, representation, and organization
of items [41]. Many of the visualization examples, across maps, line
charts, and scatter plots were cluttered and there were different reasons
for clutter. The two causes of clutter were as follows:
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Fig. 7: Design problems found at the decoding stage of the visualization pipeline reflected how the communication of the intended message
was affected by the design choices. Darker color at the lowest level indicates higher frequency of a particular cause (e.g. Overlap) within a

problem type (e.g. Clutter).

Color mixing: Color mixing (Fig. 6) was one of the causes
for clutter. This is different from the color map problem, because
color mixing mainly occurred between the the chart elements and the
background or among the different sets of symbols. For this case, the
color map could have been appropriate, but there needed to be another
extra degree of caution for avoiding color mixing. Color mixing was
observed mainly in maps and line charts. For example in the line chart
in Fig. 6, the color mixing between the grey band, the grey mean line
and the chosen colors for the other lines cause clutter.

Overlap: Overlap encompasses over-plotting of data items in
scatter plots and maps, and large number of crossings in line charts.
In some instances of line charts, the thickness of individual lines
made it difficult to identify and trace the paths of individual lines.
Over plotting of different visual variables on a scatter plot (Fig. 1(a))
made it difficult to recognize and visually search for the individual
data points. While over plotting and overlap are artifacts of the
representation, and are often unavoidable, the key question here is
whether these artifacts interfered with the intent. For example, in case
of the scatter plot example, over plotting interferes with the intent, as
identifying each model is one of the intents of the author.

Distortion: Distortion of the data in a visual representation is a
serious problem that can either lead to potential misinterpretation
or an inaccurate perception of the data, especially when quantitative
attributes are involved. The causes for distortion are as follows:

Scale inconsistency: Choosing different scales for the same vari-

able leads to inconsistent representation of the patterns. This is a
decoding problem, because the chosen scale is appropriate for a given
variable, but when multiple variables are involved, lack of attention to
consistency can mislead readers.
We found this to be a problem in some geographical maps, where a
single rainbow color map was used to represent data which were at
different scales, leading to misrepresentation of the patterns. In some
scatter plots and line charts (Fig. 8) we found that the scale of one
or more of the attributes are different from others. In this case the X
axis represents the chi-squared statistic and in the topmost line chart,
the tick placement is different from the others, signifying a different
log-scale for encoding the data than others.

Projection error: This problem is typical of maps, and due to the
inherent mapping from a 3D sphere to a 2D surface, we observed
projection error in some of the map examples. We observed that while
some error is unavoidable, use of better projection techniques could
reduce the amount of the error. For example, an equal-area projection
will be more appropriate in displaying area-sensitive data like fire-
burnt area.

Comparison complexity: The main goal in TBM domain being
model inter-comparison, the primary intent behind most visualizations
was to facilitate comparison at different levels. We found that the
comparison complexity in terms of number of data points per chart,
or number of charts per views, or their placement, led to some design
problems. We take inspiration from Gleckler et al.’s taxonomy of
visual comparison methods [20] for categorizing these problems. We
classified this as a decoding problem because even a correct encod-

ing choice could lead to comparison complexity and influence the
communication of the main message. The two causes of comparison
complexity were as follows:

Superposition overload: This category deals with the case where
the number of entities in a chart are far too many for facilitating an
effective comparison. This issue was observed mainly in line charts
and scatter plots. As opposed to a small multiple display, a large
single [S50] was often required by climate scientists for comparing
models to observations, or comparing individual values to ensemble
mean. In some of those cases, superposition overload of too many
elements led to clutter (Fig. 12) and in some case, although clutter was
not caused, superposition overload interfered with the intent (Fig. 8).
In the first case, the drawbacks of the superposition are obvious and
we discuss a small multiple solution to this problem in Section 7.3.
We found small multiples being used by scientists in case of maps,
but we found only one line chart example where a small multiple was
used for reducing overloading.

Lack of explicit encoding: This case with the issue where explicit
encoding of relationship among the compared entities would have
led to better design. It has been observed that small multiples are
important while visualizing multiple variables [48] but care should
be taken to position and sequence the individual charts appropriately
so that visual search is optimized [17]. For example, in case of
the multiple maps (Figure 1(b)), the intent here is to deduce the
degree of similarity among the different models. However a random
arrangement does not immediately show how much similar, the maps
are. It requires visual inspection almost on a pixel-by-pixel basis for
judging similarity. In that case, extracting some summary statistic
about the degree of similarity and using that for positioning the maps
seemed to be a good solution. We will discuss this solution and its
evaluation in the case study section.

Communication Gap: In many of the visualization examples we col-
lected, we found problems with factors which do not directly interfere
with the intent, but might create problems with communication of
patterns. These are auxiliary information about charts, which were
categorized as follows:

Grids: Grids can be used for chunking the important pieces of
information, which might not be intuitive immediately. Human brains
are good at picking out patterns. Often, fairly small changes to a
graphic layout that strengthen the appearance of grouping or other
types of patterns will add to the ability of the graphic to deliver an
instant impression or overview of the message being communicated.
While unnecessary grid lines must be avoided in keeping with the idea
of minimizing non-data ink proposed by Tufte [48], judicious use of
grids help in capturing the reader’s attention to the salient portions
of the chart. For example, use of column-wise grid lines in Fig. 1(a)
could separate the ecoregion-wise patterns for the different models. In
our collected examples, we found two scatter plots were grids were
used to chunk the information space, for denoting groups of data
points belonging to a model or a year.
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Causes of Problem

Visual variable problem: ambiguity

Distortion: scale inconsistency

Distortion: projection error

Distortion: scale inconsistency

Color map: quantitative mapping

Chart appropriateness: mismatch

Chart appropriateness: configuration

Visual variable problem: choice

Level-of-detail: jaggedness

Visual variable problem: choice

Level-of-detail: granularity

Color map choice: qualitative mapping

Clutter: color mixing

Clutter: overlap

Comparison complexity: superposition overload
Comparison complexity: lack of explicit encoding
Communication gap: grids

Comparison complexity: lack of explicit encoding
Communication gap: grids, legend
Communication gap: annotation

Consequence

Misinterpretation

Inaccuracy

Lack of expressiveness

Inefficiency

Lack of emphasis

TABLE 1: Connecting design problems to problem consequences
sorted by severity. Misinterpretation has the highest degree of
severity owing to the misrepresentation of the intent. Lack of emphasis
is least severe as the problems are dependent on the inefficiency of
the visual communication process, and not the incorrectness of the
representation.

Legend: In some visualization examples, we found that the charts
are not self-contained: lack of legends for different symbols or
relationships meant one has to either browse through the captions
or the textual description for making sense of what the symbols mean.
This was especially difficult where lots of different symbols are used
on a chart, for example, the scatter plot shown in Fig. 8.

Annotation: In different visualization examples, we observed
that annotation of salient patterns or data points on the chart could
communicate the intent or some other critical aspects more effectively.
For example, in case of the multiple maps (Figure 1(b)), the white
color on the maps denotes a lack pf spatial extent, but that is not
documented within the image itself. An annotation would clearly
communicate this important aspect of the chart.

5.3 Problem consequences

After we created the final version of the taxonomy, we realized that
while the taxonomy enabled us to categorize the problems and their
causes, it did not capture their severity, and most importantly, their
impact. In light of the numerous trade-offs a visualization practitioner
has to face when creating a visualization, it would be useful to
have: guidance on how severe a visualization problem could be,
and a categorization of consequences it may lead to. To solve this
problem we went through our list of problems again and consulted
our synthesis of design principles which were based on the two high-
level questions: Q1, about correctness; and Q2, about effectiveness
and efficiency of visual representations. Based on these questions
and inspired by the seminal work on graphical integrity [48] and
the criteria of expressiveness and efficiency by Mackinlay [34], we
created a list of potential problem consequences. These consequences
bridged the low-level causes of design problems to high-level effects,
which were more comprehensible from a domain scientists’ point-of-
view. The association of design consequences with design problems is
shown in Table 1, sorted by their level of severity. The level of severity
is defined by the graphical integrity principle [48], according to which
the most important criteria for a visual representation is to represent
the data correctly and accurately. The different problem consequences
are described below.

Misinterpretation: Certain design problems could lead to misinter-
pretation of the data. Since this consequence directly interfered with

the correctness of the interpretation, and violated the principles of
graphical integrity [48], it had the highest level of severity. As shown
in Table 1, ambiguity of visual variables and distortion due to scale
inconsistency (Fig. 8) could lead to the misinterpretation of the data.

Inaccuracy: In scientific data analysis, an important requirement for
visual representations is to allow scientists to deduce accurate esti-
mates from the display. When certain design problems could lead to an
inaccurate interpretation of the data with respect to the original intent,
they would cause inaccuracy. The most prevalent design problems
that caused this issue were distortion due to projection error and
quantitative color maps in the form of rainbow color maps. Problems
like chart mismatch could also cause an inaccuracy problem. For
example in case of the scatter plot example (Fig. 1(a)), one has to
mentally compute the spread of the different output variables, and
therefore inaccurately perceive the differences in the spread.

Lack of expressiveness: The expressiveness [34] criteria dictated
whether the visual representation matched with the properties of the
data attributes. A lack of expressiveness condition would not clearly
convey the intent as the certain aspects of the representation would
not match the intent. The problems leading to lack of expressiveness
from our taxonomy were chart mismatch, chart configuration, visual
variable problem due to choice, level-of-detail due to jaggedness, and
lack of explicit encoding.

Inefficiency: Efficiency of algorithms are measured in terms of
speed. Inefficiency in visualization design could also be traced to the
slowness of the interpretation on the part of the reader. When certain
design problems did not directly interfere with the interpretation of the
data with respect to the original intent in terms of its correctness or
accuracy, but affected the speed and efficiency, they led to inefficiency.
This category encompasses the principles of effectiveness [34], use
of pre-attentive features [53] and visual variables for efficient search
for patterns [13]. The problems leading to this consequence based
on our taxonomy were level-of-detail due to granularity, qualitative
color maps, clutter due to color mixing, superposition overload, and
communication gap due to lack of grids and legend.

Lack of emphasis: In static charts it is often important to draw
the reader’s attention to salient portions of patterns that have higher
priority than the rest. This can be done by highlighting different
aspects and organizing the information in a structured way [17]. While
these do not directly correspond to the data being shown, the emphasis
on the key aspects of a chart affects that message that readers decode
from a chart. The problems leading to a lack of emphasis consequence
based on our taxonomy were lack of explicit encoding, grids and
annotations. Since this consequence does not directly interfere with
the intent, it has the lowest level of severity.

6 MATCHES AND MISMATCHES

At this point of our study, we realized we had the opportunity to
get back to our group of climate scientists and get feedback on
our categorization of the design problems. We realized this would
not only be a useful way of validating our work, but it would also
be interesting to observe how visualization problems compiled by
a group of visualization expert would be received by a group of
domain scientists. We realized that while extensive research exists on
reporting design problems when evaluating visualization and, as we
have seen above, on providing visualization guidelines, there’s very
little understanding or even exploration of how criticism and guidance
is received and used by domain experts. We were interested in spotting
cases where visualization experts and domain scientists disagree and
dig deeper into why and how this kind of disagreement happens.

6.1 Interview Procedure

Before conducting the interview, for avoiding redundancy, we made
a pass through all the problem categories, in an attempt to filter out
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Fig. 9: Causes of problems sorted by high percentage of majority
disagreement from top to bottom along the Y-axis. Scientists were
mostly in agreement with the most severe problems. They were
generally in disagreement with problems which required significant
knowledge about visualization best practices and those which were in
conflict with the domain conventions.

the images which are very similar to one another. For example, in the
case of a rainbow color map problem, we only showed a few examples
which expressed the problem.

We arranged for a face-to-face interaction with our direct collabo-
rators, as part of a workshop, and the entire interaction lasted for
about four hours. We described the taxonomy along with problems
from the collected examples. Since some of the scientists did not
have a background in visualization, we first gave examples of best
practices in the choice of visual variables, color maps, chart selection,
etc. We exercised caution in not using too many technical terms, but
explained the problems as illustratively and simply as possible. We
asked the scientists to fill up a spreadsheet where they had to write if
they agreed or disagreed with a design problem. They also added in a
comments section, the reasons for their disagreement.

We realized that there could be disagreement among the climate
scientists themselves, about design problems. We did not want an
apriori settlement of their disagreement, but instead wanted to collect
raw data about the same and see if there is a majority disagreement.
Therefore we requested our collaborators to record their feedback
independently. After collecting all the responses, we separated cases
which had majority agreement (more than half the people agree
about a design problem) and majority disagreement (more than half
the people disagreed among themselves in acknowledging a design
problem).

6.2 Cases with Majority Agreement

Fig. 9 shows the distribution of the percentage of majority agreement
and disagreement, sorted by high percentage of disagreement majority
from top to bottom. We can observe that the scientists were generally
in agreement with problems that lead to the most severe consequence,
i.e., misinterpretation: scale inconsistency and ambiguity of visual
variables. Also, there was a high percentage of agreement for compar-
ison complexity problems and communication gap problems caused
by lack of legend and annotation. As observed from Table 1, these
categories lead to lack of emphasis consequence whose degree of
severity was low and did not directly interfere with the communication
of the intent.

In course of our interaction with the scientists we could reason
with this apparent dichotomy, that is, they tended to agree with
problems with lead to consequences with both highest and lowest
degrees of severity. One of the reasons was that, the scientists could

immediately recognize why certain problems led to misinterpretation
as the visual representation in those cases misrepresented the data.
There were other cases, like the comparison complexity problem,
where majority of the scientists agreed with the problem, but they
were not aware of the solution. It took a while for us to illustrate
how lack of explicit encoding or superposition overload hindered their
main intended task, which was comparison of models, and which
solutions could work better. We showed them sketches and examples
of how these problems could be solved by making the decoding
process more efficient and emphasizing the salient patterns; after
which they agreed with the problem. Understanding the effect of the
communication gap problem caused by lack of legend or annotation
did not require much visualization expertise. In several cases the
scientists commented “This figure desperately needs a legend, it is
so difficult to flip back and forth to know what the symbols mean”.
For the annotation problem, the scientists sometimes acknowledged
that annotation of the main trends would help them to focus directly
on the main message instead of searching for it.

6.3 Cases with Majority Disagreement

During our interview, we found several instances where it was difficult
for the visualization experts to convince the climate scientists about
design problems, including well-known pitfalls like rainbow color
map and 3D views. The cases with majority disagreement are shown
in Fig. 9. These were, especially cases where the problems did not
directly interfere with the intended tasks. In other words, the problems
did not have any misleading consequence, however they interfered
with accuracy, expressiveness, efficiency, and emphasis. Some of the
comments we got for problematic charts based on these consequences
were: “improvements are subjective”, “minor problem”, “This might
be a problem but I am ok with this plot”.

Next we describe categories of major disagreements we have found
during our interactions with the scientists. They are categorized in
three main classes:

Domain Conventions: We found that the source of some of the
design problems were existing conventions that the climate scientists
followed. In some examples of line charts and scatter plots, we found
them to be too cluttered or superposed with too many details to make
sense of. For example, in many cases we found the use of dots along
with lines on line charts, which cluttered the display and which we
coded for both clutter due to overlap and choice of visual variables.
However scientists explained that the observed data is by convention
encoded by black dots, and the simulated data is encoded otherwise to
distinguish them, and enable comparison between the two categories,
i.e. observed and simulated.

For the superposition overload problem we found a group of line
charts, that were similar to the one in Fig. 12, but with the additional
complexity of multiple dots in addition to the lines, representing ob-
servation data. This was an obvious candidate for overload. However,
some of the scientists asserted that this was more of a convention in
the climate science community for representing observation data on
top of lines for comparing simulation data, and they were comfortable
with such a representation.

Loss Aversion: Similar to the tendency to avoid losses rather than
acquire gains, which is popularly known as a loss aversion problem (
[28]), climate scientists tended to focus more on avoiding loss of
data in their visualizations, than on tuning the chart parameters for
gaining insight from them. The recurring level-of-detail problem with
line charts and maps exemplified this tendency. In examples where
multiple maps were compared for understanding similarity of models,
we suggested that a coarser granularity would facilitate more effective
comparison. This was because if the number of maps being compared
is more than three or four, it becomes difficult to perform a pixel-
by-pixel comparison, where the data is encoded at the finest level of
granularity.
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Fig. 10: Solution redesign for improving the scatter plot shown
in Fig. 1(a). A box plot conveys the intent of showing spread among
the output variables of prognostic and diagnostic models, and the
accompanying heatmap alleviates the problem of having to visually
search multiple symbols for knowing which models belong to which
eco-regions.
For the granularity problem, were multiple maps were compared using
a pixel-by-pixel mapping (Fig. 1(b)), although there was largely a
consensus, some scientists said “I would have to see the coarser
version to really know if it is better, though”. While one of them
said “Difficult to get a widespread trend. Personally, My eye tends
to be drawn to red dots so I may be missing much of the information
presented. A seldom problem is that I have trouble mentally overlaying
the different plots. Each plot is a different variable/model. From this
visualization, 1 have trouble comparing the locations and extremism
of values at the same geography.” This showed that the comparison
mechanism is not effective due to the low granularity but they were
not convinces unless alternate solutions showed them the real benefit.

In many line charts, daily data were plotted where monthly or
annual were being compared. Scientists observed that there is a need
or tendency to show all the data because the time spent in extracting
the data is significant. Also they believe that there might be some
anomalies that might be missed by aggregating the data. Though all
of them did not agree, there was general consensus about this fact.
When shown alternatives with monthly averages computed, one of
the scientists commented: “I agree with you on this. But the situation
is that people, especially scientists, they tends to show data as raw
as possible. I think if this figure is used in scientific publications, it’s
fine.”
Awareness about visualization best practices: We found that in
many cases scientists were not aware of what the visualization best
practices are and why they should adhere to them. The categories
which led to a lot of discussion between the scientists and visualiza-
tion experts, involved use of 3D plots (coded under chart mismatch),
use of color maps and choice of visual variables. It has been well
documented in the literature that 3D plots lead to distortion and
ineffective reading of the data [39]. However, since climate scientists
are already oriented towards reading 3D volume visualizations, they
did not think that a 3D layout for abstract data could create a problem.
The same applies to the color map problems. In most cases they felt
that the since they are already used to reading data from rainbow
color maps, a more perceptually motivated color map would not make
a difference to the goal of the intent. In a few cases they commented
that: “I agree that the color map can be better but that would be a
cosmetic changes and won't affect the intent”.

The effective use of pre-attentive features was also another cate-

gory where climate scientists did not agree with most of the problems..
For example, the scatter plot in Fig. 1(a) encodes all the models by
using different symbols. Even in absence of over plotting, the different
symbols would cause an inefficient, conjunctive visual search. We
discuss later in Section 7 how we could avoid this problem.

7 SoLuTion REDESIGN

During our interactions with the climate scientists suggested that
they needed to look at some solutions for better understanding the
consequences of problems and how to avoid those. We agreed while it
was useful to directly see why some problems should be avoided,
and it was also important to see if the redesigned visualizations
solved their problems better. We believed this phase would useful for
visualization experts, because we got additional inputs which were not
explicitly revealed in the previous phases. However, it is worth noting
here that we follow a descriptive approach rather than a prescriptive
one [32] and the final decision to judge the merit of a solution is left
to the scientists.

For selecting images for our solution redesign, it was necessary

to select a sampling of cases where scientists disagreed with the
problem, or they agreed with the problem but were unaware of
the solution. This would potentially demonstrate the effectiveness of
optimal visualization designs to the climate scientists, if they found
the solutions to be beneficial. As described in Section 6.3, there was
a high level of agreement for problems that led to misinterpretation,
inaccuracy, and lack of emphasis. Therefore, we selected examples
for which the problems mainly led to lack of expressiveness and
inefficiency, given by Table 1. We also selected examples where
there was a high degree of agreement about the problem, but they
were unaware of the solution, like, the problem due to comparison
complexity caused by superposition overload and lack of explicit
encoding.
To get feedback on the solutions, for each of the images, we specif-
ically asked them if the redesigned solution conveyed the original
intent better, and also if there were additional information they could
gather which was not possible in the original visualization.

7.1 Scatterplot

Intent(s): The context of analysis here was comparison of mod-
els with respect to their output variables and respective eco-
regions (Fig. 1(a)). The primary intent here was to look at the spread
of the prognostic and diagnostic models with respect to the different
output variables, and a secondary task was to identify, for each
variable, which models belonged to which eco-region.

Design Problems and Consequences: The design problems were
chart mismatch, choice of visual variables, granularity, and lack of
grid lines. Chart mismatch happens because for the scatter plot to
convey the first intent, readers have to mentally compute the spread,
which is avoidable with a different representation; and more seriously,
the second intent is very difficult to convey on a scatter plot due to
over plotting. The granularity problem is caused by plotting every
data point in a scatter plot, whereas the intent was to look at the
spread of the models. Visual variables with different colors, shapes
and orientation cause users to perform an inefficient, conjunctive
visual search for the models. Absence of grid lines leads to a lack
of emphasis of where the users should focus their attention: the chart
should be read column-wise, which can be emphasized by use of
grid lines. Grid lines were used by the climate scientists in two other
examples, but as we observed from Fig. 9, most of them did not agree
that adding grids could be beneficial in several examples.

Solution: A box plot is a more appropriate solution for conveying
the first intent, i.e., allowing the users to readily understand the
different patterns of spread. This is shown in Fig. 10. Since there
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Fig. 11: Solution r;adesign for the multiple maps (Fig. 1(b)).
Explicit encoding of similarity through multidimensional projection,
where higher proximity signifies greater similarity among the models.
The layout of the maps is based on the projection shown at the
inset. Subsequent layout optimization for ensuring no overlap enables
efficient comparison among multiple models.

are only a few outliers, we label them directly on the plot. For
showing the membership of models in an eco-region, we use a tabular
representation of the models in the form of a heat map, eliminating the
need of additional visual variables that might lead to confusion. The
heat map is basically a presence-absence chart where a cell is colored
if a model belongs to an eco-region, and left white, if the model is
absent for that eco-region.

Using the box plot, one can immediately recognize the much
higher than average spread for diagnostic models, for the CRP eco-
region for the NEP variable. One can also compare across different
variables and models; for example the less average spread for both
classes of models for GPP and NEP variable, where there are a few
outlier models. This trend is however absent for the Rh variable.
From the heatmap one can also immediately detect that most of the
outlier models are diagnostic models, and find that the Rh variable is
contained by much less number of diagnostic models as opposed to
NEP and GPP.

Scientists’ Feedback: Initially scientists were not convinced that the
box plots are an improvement as they thought the scatter plot showed
more information, like the ability to spot the models directly on the
visualization. However when we added the heat map, showing their
eco-region membership much more efficiently, they were convinced
that the combination of box-plot and heat map eliminated the design
problems. This is evident from the following comment by one of
the scientists: “Initially, 1 was inclined to reply that I liked seeing
the model scatter on the first graph, i.e., I can think that I can see
skew, bi-modality, etc from the scatter plot and if we just slightly
offset the points horizontally and with only 20 points, then the overlap
would not be too bad and I could glean more information. But upon
examining the plot, well, you convinced me. What you provided does
as good of a job as what I had imagined I would have preferred. In
particular, showing the box and stem AND the outliers gave a good bit
of information, as did the heat map.” They were also convinced about
the utility of the dual view: “one can immediately detect that most
of the outlier models are diagnostic models. This was very difficult to
achieve using the original scatter plots. One can also see that most of
those models are for NEP and GPP and those are not present for the
Rh variable”.

7.2 Map

Intent(s): The intent here was to identify similarities and dissimilari-
ties among models for summer months during the period 2000-2005,

based on the spatial distribution of the NEP variable.

Design Problems and Consequences: The design problems was
mainly a lack of explicit encoding as the positioning of the maps
do not represent the degree of similarity among the models. Thus,
the scientists have to sequentially search and compare models to get
insight into their relative similarity. It is thus hard to find pairwise
similarity between maps and find groups of similar maps.

Solution: We aimed to improve the visualization by deriving a
summary statistic about similarity that climate scientists use, and
manipulate the layout for encoding similarity. In discussions with the
climate scientists, we used statistical information about the models,
that is, root mean squared difference (RMSD) which is widely used
in the climate science domain. Using the pairwise computation of
RMSD between models, we applied multidimensional projection for
displaying the maps in a two-dimensional space (Fig. 11a) using the
ISOMAP [46] technique. RMSD was used as the distance function
and in the two-dimensional space the proximity of the models denote
similarity.

For representing the maps directly based on the projection view,
we adjusted the layout using an optimization algorithm [21], so
that maps did not overlap and spatial information was retained.
Displaying the maps directly was important as the spatial extents
of the models were different and the scientists wanted to see them
on the geographical map. The projection view shows clear patterns.
Note the point representing the MC1 model is far away from the
rest of points, it means that its corresponding map is very different
than the others. Another example are the maps SibB3 and VEGAS,
their points are near meaning that they are similar (confirmed by the
looking at the maps). Another similar group is formed by CLM-CASA
and ORCHIDEE maps.

Scientists’ Feedback: There was consensus among the scientists
that the resultant figure not only conveyed the original intent but
also showed additional information, like quantifying the degree of
similarity or dissimilarity of the models based on a metric they were
familiar with. They observed that this is a new visualization approach
than what they are used to, and one of them expressed caution about
the abstraction being used: “I have to be cautious about the MDS
method used. I agree that placing maps in different locations will
be beneficial. But the MDS method is only one way to represent
the similarity among those maps from one certain specific aspect”.
However, they were convinced about the utility of the approach and
its benefit in expressing model similarity: “Shows the outliers, and
their degree of outlying, more clearly than the original. This is a great
solution to a very commonplace visualization in climate modeling”.

7.3 Line Chart

Intent(s): The intent here was to compare the temporal variability of
multiple models with respect to each other and also with respect to
the ensemble mean.

Design Problems and Consequences: The problems with the
spaghetti plot ( [1]) as shown in Fig. 12 were comparison complexity
due to superposition overload, level-of-detail due to jaggedness of
lines; and clutter due to overlap. Superposition overload and overlap
led to an inefficient comparison of the temporal patterns. Jaggedness
was caused by plotting of monthly data and this lead to a lack of
expressiveness as the salient annual peaks and crests were occluded.

Solution: We aimed to solve this problem by converting the large
single [50] or the spaghetti plot, into a series of small multiples. As
shown in Fig. 13, we converted the individual lines into a band for
showing the range of variation, and plotted the ensemble mean in each
of the plots, shown by the black line, similar to the approach taken by
Andrienko and Andrienko [2]. Each line plot now belongs to a model,
and it is highlighted in red. We avoid using different colors for each
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Fig. 12: Original representation of the spaghetti plot for comparing
temporal variation of net uptake of models.

model, as the labels are sufficient for identification of a model. We
found the small multiple approach being used the scientists mostly in
case of maps, and in one more example, where maps and line charts
were used for linking the spatio-temporal trends (Figure 3). One of
the problems we did not address was the jaggedness of lines. Since
we are losing resolution by using small multiples, one option was
to compute an average by combining several years, and smooth out
the time series. However due to information loss, scientists were not
comfortable with the idea of smoothing by computation of average.

Scientists’ Feedback: The scientists unanimously felt that the result-
ing small multiple display overcomes the problems that are tradition-
ally present with a spaghetti plot. One of them commented: “The
new plots are definitely better than the original one. It’s difficult to
identify each model line in the original plot due to over-plotting”.
They appreciated the minimalist design by using few colors and
also the fact that temporal variation could be compared quickly and
intuitively with both the multi-model range, and the lines representing
different models. One of the scientists also observed that: “If the goal
is to visualize model similarity then we can apply the same layout
optimization as applied to the multiple maps example to rearrange
similarly behaving models together”. They were confident that this
would be an exemplary visualization which will be emulated in model
comparison scenarios and preferred over the traditional spaghetti plot.

8 DesiaN ProeLEM TRADE-OFFs

In this section we present one of the the key findings of our study,
which is a reflection on the trade-offs among the different problem
consequences. Many design problems and consequences cannot be
simultaneously avoided. An awareness of the trade-offs is necessary
for the scientists to judge how best to configure a visualization.
The first decision that scientists have to take, is to weigh which
design consequence more, and accordingly decide which potential
design problems to avoid the most. A perfect visualization is hard to
achieve and there is no one-size-fits-all formula for generating one.
Visualization design is heavily parameterized by the scientists’ intent,
which needs to take into account the different trade-offs. Following
were the different trade-offs we found in our analysis:

Lack of expressiveness vs Inaccuracy: This trade-off was observed
in cases where scientists’ intent for visualizing the data at the finest
level of detail, led to a lack of expressiveness of the salient patterns.
For example, in case of jagged lines, an average could be computed
to reduce the number of steps, and that would lead to higher expres-
siveness, but at the cost of inaccuracy. Another similar example of
this trade-off was choice of visual variable and granularity problem in
maps due to pixel-by-pixel representation on maps. As acknowledged
by some of the scientists, a coarser representation would have lead to
better expressiveness of the data.

Inefficiency vs Inaccuracy: This trade-off was observed in cases
where an accurate representation was achieved at the cost of an
efficient one. Superposition of multiple lines and points for com-
parison with observation data is a common practice with climate
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Fig. 13: Solution redesign for improving the spaghetti plot.
Separating the model representations into small multiples of line
charts enables efficient comparison of each model trend with the
ensemble mean and range of variance.

scientists. While in many cases superposition facilitates accurate
multiway comparison, fulfilling the expressiveness criteria, in some
cases this also leads to clutter leading to inefficiency. Especially
during in publications and broader dissemination, these criteria are
important. In these cases, small multiples and use of explicit encoding
of relationships should be considered.

Lack of Emphasis Vs Inefficiency: This trade-off was observed in
cases where scientists’ intent of keeping charts free of clutter, for
achieving more efficiency, came at the cost of a lack of emphasis.
Charts should be self-contained by use of proper labelling, grids and
annotations if necessary, which help emphasize the intended message.
Improper use of these auxiliary information however can clutter charts
and make the decoding process inefficient. This trade-off is also
echoed my Few’s mantra of minimizing non-data ink [17].

9 GuiDELINES FOR AvoipiNg DesiGN PROBLEMS

The design problems and consequences enable a visualization expert
to reflect on design-trade-offs and formulate solutions based on
the intents that consider those trade-offs. Climate scientists are not
familiar with all visualization best practices, which we demonstrated
in Section 6.3. It was thus necessary to abstract the problems,
consequences and their solutions in the form of guidelines, that are
more comprehensible from a scientist’s perspective. Our objective
was to distill the general problem trends and provide guidelines that
can enable climate scientists to avoid those problems. The following
guidelines should be understood in the context of the classes of
visualizations we collected, which were maps, scatter plots, and
line charts; and the scientific intents, which mainly centered around
understanding and expressing similarity of climate models in those
visualizations. The following guidelines are discussed with the context
of the related design problems, so that scientists are able to bridge the
gap between the design recommendations and current practices, and
embrace the best practices in visualization.

G1. Keep audience in mind. A recurring issue cutting across
different design problems was the tendency of scientists to use the
visualizations designed for their own analysis, for publication and
dissemination of their results as well. This was triggered by an implicit
assumption about the familiarity of the audience with what to look
for in the data. On the other hand, to cater to a broad audience,
whether internal or external to the climate science community, the
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visualization itself should be expressive enough to convey the intent,
without overwhelming the audience with the details.

In those cases, rather than representing all the data (level-of-detail

problem), it is more important to show and highlight the trends by
abstracting or aggregating some of the data. As we had pointed out
in Section 6.3, the problem of loss aversion was a leading cause of
problems in maps and line charts. There were many cases where the
old adage of ‘less is more’ held true for the visualization designs.
For example, if a line chart is too jagged because all time-steps are
represented, it can obscure the message. In cases where the intent is to
visually express similarity of multiple models, scientists can choose
to represent the data at a coarser granularity by choosing a visual
variable (choice of visual variable problem) other than color, like
orientation of lines or glyphs which have been successfully adopted
in the geographical data visualization domain [33].
G2. Guide users attention to salient visual objects. A critical
requirement of any visualization design is to explicitly guide user’s
attention to the salient patterns. Enabling visual comparison of similar
and dissimilar models was the underlying intent of the images we
collected. To facilitate such comparison, key elements of the visual
representations should serve as indexes for visual search for finding
models that are similar or dissimilar.

We did not find effective use of Gestalt laws of grouping, which
can be an effective visual cue in these cases. This led to the compar-
ison complexity problem (Figure 7. For example, as we had shown
in Fig. 11 absence of explicit encoding the message about similar
or dissimilar models is not fully expressed. Another examples is the
problem of superposition overload (Fig. 12). This causes clutter which
can either disinterest the audience or cause trouble in finding the
patterns. Scientists should avoid relying on the audience’s mental
operations to make those visual comparisons, which can be both
inefficient and ineffective in absence of any visual cue. As we had
elaborated in Section 5.3, explicit encoding of relationships and
emphasis of the key message can alleviate these problems.

G3. Focus on the message and make it self-contained: In many
cases, the scientists’ intents were not fully conveyed as the message of
a chart was incomplete due to either lack of emphasis of the take-away
message or a lack of synergy between the auxiliary information and
visual representation. In complex visualizations, it is often necessary
not just showing the data, but also explaining what the visualization
conveys through highlights and texts. To make the message clear,
scientists can use size, color or orientation, that is substantially
different from that of the other objects in the visualization, than the
one which is most important. This is especially true of outlier objects.

The design problems related to this category were mostly those
associated with a lack of emphasis. Although auxiliary information
about charts only help when a chart is effective in the first place, they
can help focus human attention very quickly to the salient portions
of a chart. In cases of complex charts with multiple messages, this
aids the user in decoding the intended message very efficiently. Charts
should also be self-contained, without the audience having to search
for the meaning of the legends in some other table or graph, which
was true of some examples we collected from the research papers.
GA4. Tie color selection with data semantics. We observed in Fig. 9
that choice of color was one of the problem categories where there
was a lot of disagreement between visualization experts and climate
scientists. We found that our collaborators generally considered the
use of color as more of an aesthetic issue than it being tied to the data
semantics. While there were some good examples of choice of color
maps, in majority of the cases we found that the choice of color map
was not appropriate.

Apart from color maps, we also found some other inappropriate
choices of colors. For example, in some cases, we found the most
important visual object, such as the mean or the trend line being
encoded in gray, in which case it would be hidden in clutter and not

be emphasized. Apart from different color scales for different data
types, we also recommend the effective use of color in emphasizing
certain objects (e.g., red can create a pop-out effect) or muting certain
aspects of the data, like using gray to de-emphasize points in a scatter
plot that create noise and use color only to encode certain salient
points.

GS. Be mindful of defaults: For several design problems we had
assessed, one of the precursors for the problems was the defaults of
the tool that the scientists were using for creating those visualizations.
One of the infamous defaults in many tools is the rainbow color map.
The other one is the selection of random symbols for showing discrete
data. In our taxonomy, these led to the color map choice and visual
variable problems (Figure 5). The consequences of these problems
can be as severe as misinterpretation, or lead to lack of emphasis for
salient patterns (Table 1). In these cases, it is necessary for the scien-
tists to look beyond the defaults and introspect if the defaults impede
data analysis and visual communication. Such introspection might
ultimately require scientists to manually configure visualizations for
overcoming the problems with the default settings.

10 ScoPe AND IMPACT

In this section we discuss the scope of our work and the impact in
terms of the generalizability and utility of mapping design principles
to domain-specific, static visualization designs.

Limitations: Our work has some important limitations to take into
account; first of all is its subjective nature due to the qualitative
methodology, While use of grounded theory and bottom-up approach
to building visualization usage models are gaining ground [26], [51],
it is an acknowledged fact that subsequent research needs to be done
to develop prescriptive solutions to the problems. Accordingly, our
focus in this work has been to reflect on the design problems through
the descriptive taxonomy, which can be expanded in scope through
further research to build prescriptive, broadly applicable solutions.
Moreover, there are multiple ways of describing the design problems
we found. We are not claiming that this is the only way to classify
visualization design problems we found. However, we are confident
that through our collaboration with a broad group of climate scientists
and our understanding of the state-of-the-art in visualization practices,
our classification provides a good starting point for bridging the
gap between visualization best practices and existing climate data
visualizations. The guidelines should be understood in the context of
the sample of images we collected. These guidelines still need to be
validated through empirical evaluations.

Generalizability: Although the sample of visualizations we collected
was limited by their type (maps, line charts, and scatter plots) for
us to build prescriptive solutions, we believe many aspects of our
study are generalizable. First, although we used only three types of
visualizations, they represent a broad set of usage scenarios in climate
science: understanding spatial patterns, temporal patterns and looking
at bivariate relationships among variables. The tasks mainly involved
visual comparison of distributions, correlations, and variability, which
are common analysis tasks cutting across climate science and even
other domains. From that perspective, we are confident that the
problem classification will be applicable to different domains and
usage scenarios.

Second, the problem classification itself follows a mapping be-
tween general design principles and visualization examples from a
domain. Even if some of the problems we found in the climate
science domain do not exist in other domains, the same principles and
classification scheme based on encoding and decoding problem stages
would still apply. The same would apply for the problem type level,
only the causes of the problems might be different. For example, there
can be different causes for a level of detail problem, or the problem
or clutter or distortion, but these problem types are still applicable
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for judging the quality of visualizations. As mentioned before, to the
best of our knowledge, our work is a first step towards bridging the
gap between general design principles and how they are realized in
practice.

Third, from a visualization perspective, some problems we found

are symptomatic of general gaps in research involving static visualiza-
tions. First, while much research has focus on judging effectiveness
of interactive visualizations, many mediums such as publications
and presentations are constrained by their static nature. We found
that representing multivariate or multi-model relationships and ef-
fectively visually communicating their relationships have non-trivial
challenges. Second, use of bad defaults has been widely talked about,
but rarely addressed in the tools available today, with a few exceptions,
like the Paraview tool where the rainbow color map was changed
to the perceptually effective divergent color map [35]. Our findings
should encourage such changes in the visualization tools, which will
ensure better designs by domain experts.
Utility: A large body of research focuses on interactive visualization
and it is a general assumption that good interactive visualization
design can be easily and directly turned into good visual presen-
tation design. But our work points to the fact there are different
challenges and gaps and we need to better understand and research
this difference. Visual presentation is not just taking pictures from our
interactive tools and placing them into our papers and presentations.
The design has to tell a compelling story about the findings of the
scientists to the non-technical stakeholders, and in visualization, the
presentation and story-telling aspect has received much less attention
till date [31]. Some well-defined best practices like harmfulness of
rainbow color maps [5] need more empirical validation, especially
in the science community [4] for establishing the objective reasons
behind recommendation of perceptually motivated color maps. A
survey of existing visualization tools, investigating the quality of the
defaults, will be helpful in identifying these issues [15] and will enable
visualization non-experts like domain scientists design visualizations
more efficiently.

11 ConcLusion AND Future WoRrk

In this paper, we have presented a comprehensive study of visualiza-
tions designed by climate scientists and classified their shortcomings
by categorizing the causes and consequences of design problems in
the form of a taxonomy. In the process, we have investigated the
cross-domain agreement and disagreement about design problems and
highlighted their reasons. Further, we have demonstrated the utility of
our taxonomy by getting feedback on redesigned solutions, which the
scientists found to be beneficial for their practical use. In this work,
we collaborated directly and indirectly with a large group of domain
experts. This gave us a unique opportunity to understand visualization
practices in the climate science community. We found that our
collaborators are open to embracing new ideas about visualizing their
data and the best practices that exist in our community. Currently, we
are planning to work towards extracting the problem classifications
defined by our taxonomy and building an automated system that will
be able to detect design problems and provide recommendations for
task-based solutions.
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