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Abstract

The traffic infrastructure greatly impacts the quality of life in urban environments. To optimize this infrastructure,
engineers and decision makers need to explore traffic data. In doing so, they face two important challenges: the
sparseness of speed sensors that cover only a limited number of road segments, and the complexity of traffic
patterns they need to analyze. In this paper we take a first step at addressing these challenges. We use New York
City (NYC) taxi trips as sensors to capture traffic information. While taxis provide substantial coverage of the
city, the data captured about taxi trips contain neither the location of taxis at frequent intervals nor their routes.
We propose an efficient traffic model to derive speed and direction information from these data, and show that it
provides reliable estimates. Using these estimates, we define a time-varying vector-valued function on a directed
graph representing the road network, and adapt techniques used for vector fields to visualize the traffic dynamics.
We demonstrate the utility of our technique in several case studies that reveal interesting mobility patterns in
NYC'’s traffic. These patterns were validated by experts from NYC’s Department of Transportation and the NYC
Taxi & Limousine Commission, who also provided interesting insights into these results.

1. Introduction

Data captured in urban environments provide valuable in-
formation about the behavior of many components of a city.
The analysis of such data has the potential to derive knowl-
edge that can be used to make cities more efficient, as well
as inform policies and planning decisions. Traffic is a key
component of an urban ecosystem.

To understand and optimize the traffic infrastructure, ur-
ban planners need to explore and analyze traffic patterns
from historic data over different periods of time and in dif-
ferent parts of the city. Questions pertaining to traffic pat-
terns in a city can be broadly categorized as scalar-based
and mobility-based tasks. Scalar-based questions involve a
fixed property of the traffic such as speed and density of
traffic. Tasks of interest from this category include explor-
ing how traffic speeds vary throughout a city during differ-
ent times over different days. Mobility-based tasks, on the
other hand, involve studying the flow of traffic along various
streets of the city. These include exploring the flow of slow-
moving traffic, free-flowing traffic, and direction of traffic.
Additionally, in order to ensure that a proposed change to
this infrastructure does not have adverse affects, they should
also be able to simulate traffic dynamics under various con-
straints. But doing so is challenging for many reasons, in
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particular, the sparseness of traffic data that is captured and
the complexity of the analyses that need to be carried out.

Traffic data is often obtained from traffic cameras or fixed
readers (e.g., EZ-pass). However, only a small number of
these devices are deployed in practice. GPS-tracked vehicles
are another potential source of traffic information. A subset
of these sensors are already being used by popular map ser-
vices such as Google maps and Apple maps to provide real-
time traffic information to users. However, their coverage is
incomplete and limited to segments of major roads, and hin-
ders the analysis as well as the accuracy of derived models.

While tracking all vehicles is not feasible, it is possible
to track an important subset: taxis. Taxi fleets in many cities
are equipped with GPS. Consider, for example, New York
City (NYC): 13,000 taxis make, on average, 500,000 trips
and carry over 1 million passengers every single day; to-
taling roughly 170 million trips per year. Given this high
penetration rate of taxis in large cities, it is therefore rea-
sonable to assume that the taxis can be used as probe vehi-
cles, and taxi movement and travel times are representative
of the overall traffic and provides a broad coverage of the
city in space and time [ZHUK13]. Unfortunately, taxi data
captured by the NYC Taxi & Limousine Commission con-
tains neither the location of the taxis at regular intervals nor
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the route taken—they only contain information about loca-
tions and times for pickups and dropoffs. Thus, an important
question is whether it is possible to derive accurate traffic
information from these data.

Exploring traffic mobility dynamics through visualization
is also a challenging task. Previous works have predomi-
nantly focused on the global movement of objects, and pro-
posed techniques for visualizing trajectories either directly
on a map, or through the use of specialized metaphors like
the space-time cube and flow map [AA13]. While these tech-
niques are effective for analyzing object movement, they do
not capture the local mobility dynamics resultant from their
collective motion. Furthermore, in the presence of a large
number of objects, such visualizations quickly get cluttered.

Vector field visualization techniques [MLP*10a], on the

other hand, are capable of visualizing localized flow and
have been effectively used in various applications in scien-
tific visualization and computer graphics [BZK09, CEW*08,
ZMTO06]. Given that the traffic movement can be consid-
ered as a “flow" over the road network, we propose to adapt
techniques from vector field visualization to help answer
the above mentioned mobility-based tasks. However, they
require the underlying domain on which the flow is com-
puted to be continuous (the domain is usually a subset of an
Euclidean space). But the road network of a city on which
the traffic flows is a graph, which is a discrete domain. Tra-
ditional vector field techniques therefore cannot be directly
applied to visualize traffic dynamics.
Contributions. We propose a new approach to support inter-
active analysis and visualization of traffic mobility dynam-
ics. First, we overcome the sparseness of sensors with a scal-
able model that takes as input data about taxi trips and de-
rives the required traffic information. The model relies on an
efficient data-driven closest path algorithm to compute plau-
sible routes for trips, which are subsequently used to infer
traffic speed. We validated our model against speed values
obtained from EZ-pass tag readers, and the results show that
our model derives accurate predictions, outperforming exist-
ing models.

To support interactive exploration of the traffic data, the
predicted traffic speed for all roads is then used to derive a
traffic function, which corresponds to a time-varying prob-
abilistic vector-valued function defined on the graph repre-
senting the road network. We adapt two well-known vector
field visualization techniques, particle advection techniques
and global techniques, to visualize local traffic flow and to
provide global traffic overviews, respectively. We evaluate
our approach through a study of traffic dynamics in NYC.
We present use cases that show how our technique can be
used to accomplish various analysis tasks, including traffic
mobility visualization, identification of traffic bottlenecks,
and simulation of traffic flow. As part of this evaluation, we
sought feedback from experts from the NYC Department of
Transportation (DoT) and the Taxi & Limousine Commis-
sion (TLC), who also used our technique to study specific
cases that were of interest to them.

2. Related Work

In this section we discuss related work in two categories:
methods that infer traffic information from movement data,
and those that visualize these data. We also review vector
field techniques commonly used in scientific visualization.
Traffic Data. Traffic data can be acquired in different ways,
for example, from road sensors, video captured at roadside
locations, or floating sensors such as GPS-equiped vehicles.
The use of video images captured from specific roadside lo-
cations allows the use of image processing techniques for
tracking vehicle movements in different frames, as well as
estimation of mean traffic speed [DCPun]. Several papers
use data captured from GPS devices to estimate routes and
compute traffic speed. Traces can be collected from GPS-
enabled taxis at different sampling speeds, ranging from
short time intervals (seconds to minutes) to those captured
only at the source and destination, like the NYC taxi data.
The usual procedure to identify routes taken by a taxi (or
any other vehicle) is to use a map-matching approach, which
maps the best possible route taken by the taxi using the lo-
cations of the taxi during the trip. We refer the reader to the
survey by Quddus et al. [QONO7] for a detailed discussion
on various map-matching algorithms. Zou et al. [ZmXZ05]
presented a technique for studying speed in arterial roads us-
ing GPS locations and speeds recorded at regular sampling
periods during rides. Lou et al. [LZZ*09] proposed a low-
sampling-rate map matching algorithm, which only consid-
ers temporal and spatial constraints on the trajectories. They
defined the sampling rate to be low if there is only one sam-
ple for every two minutes. Since the NYC taxi data does not
have any samples from a trip except for its start and end lo-
cations, these methods cannot be directly applied. Recently,
Zhan et al. [ZHUK13] formulated the problem of identify-
ing traffic speeds on different streets using the NYC taxi
data as a non-linear optimization problem. Their approach
takes 15 minutes to solve this optimization on a region in-
volving a small region in Midtown Manhattan (5% of the
roads in Manhattan). Moreover, they only compute the aver-
age hourly speeds of the streets using trips corresponding to
a week. This approach is clearly not tractable to be able to
use all the trips over entire Manhattan. Santi et al. [SRS*13]
assumed that taxis choose the shortest path, and used Dijk-
stra’s algorithm to compute their paths. As we show later,
since taxis seldom take the shortest path, such an assump-
tion is likely to result in inaccurate estimation of the traf-
fic speeds. Note that neither of these models was validated
against actual traffic speeds.

Density-map based visualizations [WVD-
WVWO09, SWvdW*11], which are used for visualizing
object movement, can be used to study patterns of taxi trips.
However, they will not be useful for studying the localized
traffic flow patterns resulting form their combined move-
ment. Visualization of traffic data is often accomplished
through the use of information visualization techniques.
Tominski et al. [TSAA12] use stacked views to display the
attributes associated with known trajectories. More recently,
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Ferreira et al. [FPV*13] and Wang et al. [WLY *13] proposed
visualization tools for the exploration of transportation-
related data. Other techniques used in the visual analytics
of movement data along with their attributes are described
in the survey by Andrienko et al. [AA13]. All of these
techniques focus on the global movement of objects. To the
best of our knowledge, our work is the first to use vector
field based techniques to address this problem.

Vector Field Visualization. Vector field and flow visualiza-
tion has been an active field of research for over two decades.
We refer the readers to the following surveys [LHD*04,
MLP*10a,PVH*03] for detailed literature reviews. More re-
cently, GPUs have been extensively used for interactive vi-
sualization of particle flows [KKKWO05, KKW05, BSK*07,
BKKWOS]. Topology-based methods have also been used to
identify features and visualize vector fields [PPF*11].

We are interested in the flow of traffic over the road net-
work. Existing vector field methods use an Euclidean ge-
ometric domain, and compute flows over a continuous do-
main. Since traffic data is modeled as a vector-valued func-
tion over a discrete directed graph, these methods cannot be
directly applied. As far as we know, there has been no work
that applied vector field methods over discrete domains.

3. Background

We now discuss definitions and visualization techniques re-
lated to vector fields. More detailed discussions on these
concepts can be found in [Baj99, Tel08, MLP* 10b].

3.1. Vector Field

An n-dimensional vector v = (v,vy,...,v,) is a n-tuple
where v; € R. An n-dimensional vector field is a vector-
valued function f : D — R”" that maps a geometric domain to
an n-dimensional vector. The geometric domain D is usually
a subset of the Euclidean space, D C R”". Fig. 1 shows two
examples of a 2-dimensional vector field. Fig. 1(a) shows an
example of a stationary vector field, i.e., a vector field that
doesn’t change over time. Fig. 1(b) shows an example of a
time-varying vector field.

In this work, we are interested in modeling the flow of
traffic in a city. To do this, we represent the geometric do-
main as a directed graph, and define a vector-valued function
on the edges of the graph. The direction of the vector is the
same as the direction of an edge. Also, each directed edge
is also associated with a real value denoting the number of
taxis that ply on the road corresponding to that edge.

3.2. Visualization of vector fields

Particle advection techniques used to visualize 2D vector
fields introduce an abstract weightless particle into the vec-
tor field and visualize the effects of the vector field on this
particle. Consider a particle at location I; = (x,y) at time 7.
Let its velocity at this location and time be v;. After a time
dt, the location of the particle is given by I, 4, =1, +dt - v;.
Integrating the above differential equation from current time
to a later time ¢’ gives us the location of the point at time ¢’
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Figure 1: Particle advection techniques. (a) Stationary vec-
tor field. The red streamline is computed starting from the
blue seed point. (b) Time-varying vector field. The three
black lines correspond to pathlines starting at different time
steps. The red streakline is the locus of a stream of particles
injected into the vector field.

The aspect of the particle that is tracked defines the type
of a field line. Field lines are typically used to visualize and
analyze the history of flow from a given location(s) of inter-
est. We are mainly interested in three types of field lines:
Path lines. These track the path of a weightless particle in a
vector field. The three black lines in Fig. 1(b) are pathlines
that track a particle starting at different time steps.

Stream lines. These lines track the path of the weightless
particle in a stationary vector field. When used for a given
time instant of a time-varying vector field, they essentially
show the direction of the particle movement for that instant.
The red line in Fig. 1(a) shows a streamline that tracks a
particle starting at the blue seed point.

Streak lines. Consider a continuous release of particles into
the vector field. The locus of these particles forms a streak
line. The red line in Fig. 1(b) represents one such streakline.

Later in Section 5, we formally define the traffic function,
and describe how we adapt these techniques to support its
visualization.

4. Traffic Model

The NYC taxi data gathered by TLC consists of GPS-derived
start and stop times and locations, distance traveled, trip du-
ration, as well as fare and tip. The data set we obtained con-
tains information for roughly 520 million taxi trips during
2009, 2011 and 2012. The road network of NYC is repre-
sented as a directed graph G(V, E). Each directed edge e € E
represents a segment of a road, and each node v € V repre-
sents the intersection point of two or more roads. When a
road allows traffic flow in both directions, there are two di-
rected edges corresponding to that road. The length of each
road segment ¢; is given by d;. Let#; denote the time taken for
a vehicle to go from one intersection point to another along
the road segment represented by e;. We assume that the ori-
gin and destination of all taxi trips correspond to nodes of
this graph. In case a trip begins or ends in the middle of
a street, we approximate the corresponding location to the
nearest intersection node.
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Given the actual distance distr, and time timer for each
trip 7, we compute the average road speed of traffic in two
stages: (1) Identify the plausible routes for every trip; and
(2) Use the identified routes to infer the speed of traffic along
various roads. In this section, we first describe the closest
path algorithm used to identify plausible routes for a taxi
trip. Next, we explain the procedure to infer the speed of
traffic using the computed routes. Finally, we validate our
model with the available albeit partial traffic data.

4.1. Computing Closest Paths

Problem motivation. The path taken by a taxi could be ap-
proximated using the shortest path between the origin and
destination. However in practice, the taxi driver does not
consider the shortest path for a majority of the trips. This is
reflected in the input data, where we observe that the length
of the shortest path does not correspond to the actual dis-
tance of a given trip. For example, in a sample 1 week pe-
riod, 56% of trips had a total length greater than that of the
shortest path between source and destination. So, rather than
using the shortest path to identify the route taken by a taxi,
we are interested in identifying paths whose lengths are clos-
est to the actual distance of a given trip.

Formally, given a source vy; and destination v, of atrip 7',
our goal is to find k paths between vy and v,, having length
closest to distt. A brute force method of going through all
possible paths between vy and v,, is not practical given the
size of the search space, which is exponential in the size of
the road network. We therefore need to use a heuristic to
prune and traverse through the search space. One possible
method is to find a set of X’ shortest paths, for a large enough
K’ such that the length of the k" path is closest to dist7 . This
can be accomplished using the Yen’s ranking loopless short-
est paths algorithm [Yen71] which inductively computes the
i shortest path between two nodes using the common sub-
paths of the (i — 1)-shortest paths. The algorithm uses the
result of the shortest path as starting point, followed by a
relaxation procedure until the distance constraint is met.

Unfortunately, due to a grid-like structure of the road net-
work in most part of NYC, Yen’s approach is not practical,
since it has to compute and discard a large number of subop-
timal paths. In our experiments, this number was as high as
10,000 in many cases (see Appendix A).

Closest path algorithm. We propose an alternate heuristic-
based solution, which can efficiently compute a set of top-k
closest paths by breaking the problem into a set of shortest-
path queries. Our intuition is that when a taxi driver chooses
to take a path that is not the shortest path due to traffic con-
ditions, passenger requests, etc., he would still have to pass
through a set of way-points along this route having the fol-
lowing property: the path taken between any two consecu-
tive way-points is the shortest path between the two points.
We use the number of such way-points n as a heuristic to
prune the search space. We now redefine the closest paths
problem as follows. Given a road network G(V, E), a pair of

source-destination nodes (v, ven ), and a distance distr, find
k sets of way-points W,, = {wy,w,...,w,|w; € V} such that
the length of the shortest paths from vy to v, that passes
through all nodes in W,, are closest to distr:
ar%VI:linUV.u-,Wl +Z;:1l buiwisy by vy — distr |
where I, , is the length of the shortest path from a to b. This
formulation reduces the size of the search space to O(|V|")
paths. In our application, we use n = 1 in order to reconstruct
the taxi paths. Thus, our problem is reduced to find node w
that minimizes the following:
argmin |lvmw + lw,vm — diStT|
w

Implementation and efficiency. To efficiently execute a
closest path query, we first pre-compute the shortest paths
between all pairs of vertices of the road network. Since
the road network is a planar graph, |[E| = O(|V|), this pre-
computation can be accomplished in O(|V|*log|V|) time
(one Dijkstra computation is done for each vertex of the net-
work). Using this pre-computed data, the closest path query
can be answered in O(|V|) time for each pair (v, Ven).

Note that Yen’s ranking algorithm has quadratic time
complexity of O(k|V|(E +|V|log|V])). Comparing to an im-
plementation of the Yen’s ranking loopless paths algorithm
by Martins and Pascoal [ksp, MPO3], our technique was over
600x faster. We were able to compute top-k closest paths for
all taxi trips in a month in under 15 minutes while the same
task would take the other method over a week to complete.
This test was performed on an 8-core machine.

4.2. Closest Path Traffic Model

In this model, we first select k paths whose distance is
closest to the actual distance of the trip. Unless other-
wise mentioned, we use k = 20 throughout the paper. Let
{T\,T5,...,T;} denote the k-closest paths corresponding to
a trip 7. Consider one such possible path 7;, and let the cor-
responding trip 7 take time timer. Let the start and end
positions of this trip be vy and v,,, respectively. This path
can be represented as a set of nodes of the graph G as
T = {ej,,eiy,...,€, }. We now have the relation: #;, +1;, +
...+, = timer. We assume that the time taken to travel a
road segment is proportional to its length, that is, we use the
average speed of a trip to approximate the speed of each road
segment that is part of that trip. Then, the time taken for each
road segment for this trip is given by

di,
Zi’:l di;

Let closeness; = |disty —distr|, Vi € [1,k]. We then define
a weight for each possible path w; = Toseness e where €
is a small constant used to avoid division by zero. That is,
the weight of a possible path is inversely proportional to its
closeness to the actual distance.

ti, = X timer (€)]

Using the above formulation for the trips that happen
within the time period of interest, we get a set of equations
corresponding to each of the trips. Let n be the number of
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trips that passes through road segment e; in a given time in-
terval. Solving Equation 1 for the n trips, we get a set of
values for 7; = {til,tiz, St

The possible speeds s; = {(s},w}!), (s?,w?)...,(s", W)}
of each road segment ¢; are then computed, where s7 = ;ié
Note that each speed value in this set is also associated with
a weight equal to the weight of the path that was used to

obtain that speed value. The weighted mean s; and variance
O'i2 is computed as follows [Wes79]:

noo J n J_ )2 ol
_ ijlsixwi 2 Zj:l(sifs,-) X W

= T =

Yol tlyr

n

Fig. 2 illustrates this
procedure. For a trip T
from P to D with distance
distr, we find 4 paths
{Tl , 1, T, T4} whose
‘ lengths are closest to

T, distr. Here, paths 77 and
T, have the same length
and are closer to disty
than paths 73 and 7.
Therefore, the weights wq
and wy are greater than the
weights w3 and wy. Also
note that the set s, = {s},s2,53} is of size 3 since the road
segment e is part of 3 of the 4 paths.

{(sa,1wa), (52, w3), (55, wQ)}

o EEEE—

Figure 2: The closest path
model chooses the k-closest
paths for every trip. This ex-
ample uses k = 4.

Validation. To validate the closest path traffic model, we
compare it with the shortest-path model [SRS*13], as well
as with the actual data obtained using EZ-pass tag readers.
NYC has a set of such readers placed at strategic points
in order to collect traffic information. We had access to
data for the month of November, 2011, corresponding to
Madison Ave. and Lexington Ave. between 49th and 57th
streets. We use the Kullback-Leibler (KL) divergence met-
ric [KL51] to compare the two traffic models with the ac-
tual data. For two distributions P and Q, the KL divergence
measure Dgy (P||Q) computes the amount of information
lost when approximating P using Q. Given the traffic de-
rived from the closest path model M, ;.5 , We first compute
a set of divergence measures D josesr = Drr(tag||Mciosest)
for different time periods. Here, rag represents the distribu-
tion obtained using the EZ-pass tag readers. A lower diver-
gence value reveals a better approximation of the observed
traffic distribution. We repeat this process using the shortest
path to infer traffic speeds to obtain Dgj,resr-

Fig. 3 plots the histogram of D jysesr and Dyjpppes- NoOte
that most of the divergence values of the closest path model
is close to zero, implying that this model is a good approx-
imation of the observed speed distribution. Moreover, the
closest path model has more divergence values close to zero
than the shortest path model, implying that this model bet-
ter approximates the observed speed distribution when com-
pared to the shortest path model. As mentioned earlier, this
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Figure 3: Histogram of the KL divergence measures ob-
tained when comparing the closest path and shortest path
models with the distributions computed using data from EZ
pass tag readers. Note that values of D jysest from more time
periods are closer to zero than the values of Dgpories indi-
cating that the closest path model better approximates the
observed traffic speeds.

is due to the fact that many of the taxi trips do not take the
shortest path from its pick-up location to its drop-off loca-
tion, and therefore, the closest path model does a better job
of identifying the most probable routes. More details as well
as further experiments can be found in Appendix C.

5. The Traffic Function

Visualization of the traffic function is essential to understand
the traffic dynamics of a city. In this section, we first for-
mally define the traffic function, and describe its computa-
tion. Next, we discuss different visualization techniques and
the design choices made to support the traffic function.

5.1. Vector-Valued Function

Recall that the road network is modeled as a directed graph
G(V,E). Given the discrete nature of the domain, the traffic
function at a given time instant is defined as a vector-valued
function f : E — R3, E C V x V, which maps each edge of
the graph to v = (vy,vy,d). Since the direction of (vy,vy) is
the same as the direction of an edge, the vector v can be im-
plicitly represented as ¥ = (s,d). Here, s denotes the speed of
traffic along a road (magnitude of the vector), and d denotes
the density of taxis plying on that road.

Using the above formulation, for a given time interval,
the speed at each edge ¢; is equal to the mean speed s; of the
corresponding road (Section 4.2). The density of taxis along
that road is computed as d; = Zj:l W'il .

Given the large number of samples (greater than 20000
per hour), the density directly translates to the probability
that a taxi takes a particular road. It is used to compute both
the local probability that a taxi uses a particular road, as well
as a global distribution, which denotes the probable loca-
tions of taxis at any given time. As we will show later, this
probability is used to visualize the taxi movement patterns.

The traffic speed varies depending on the time of day, as
well as the day of the week. Therefore, we compute the traf-
fic function for short 5 minute intervals for different days of
the week. Fig. 4 shows an example traffic function for one
time step. The directed edges denotes the streets, and the
vectors associated for four of those edges are shown.
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5.2. Visualizing the Traffic Function
‘We now describe our adaptation of vector field visualization
techniques to the traffic function defined above.

5.2.1. Flow Lines
In traditional vector fields, given a time instant, the direction
of the flow at any point in space is constant. Unlike such
functions, there are multiple possible directions a particle
can take at each node of the underlying directed graph of
the traffic function. Each of the different alternatives avail-
able for choosing the direction results in visualizing different
interesting phenomena in the traffic flow. We now discuss
these alternatives and their significance.
Direction of lowest speed. When a
particle is at a node, then the adjacent
edge having the lowest speed is cho-
sen by the particle. This traces the
path of slowest moving traffic, and is
useful to identify bottlenecks in the
traffic flow. For example, consider a
particle that reaches node X in Fig. 4
along the edge (D,X) while tracing
the flow line. Using this option, the
particle will continue moving forward along edge (X,B).
While tracing the particle, we do not allow a flow line to
choose the reverse edge. Fig. 5(c) shows an example set of
pathlines computed from a random set of seed points using
the edge of lowest speed to select a direction.
Direction of highest speed. The particle chooses the edge
with highest speed at a node. The path traced in this case
helps identify possible routes with relatively free flowing
traffic. For example, a particle at node X in Fig. 4 will choose
edge (X,C). Fig. 5(b) shows pathlines computed using the
edge of highest speed to select a direction.
Direction of highest probability. The particle chooses the
edge having highest density of taxis. This helps identify
the most probable paths taken by taxis from a given posi-
tion. Using this option, a particle at node X in Fig. 4 will
again choose edge (X, C), since it has the highest probability.
Fig. 5(d) shows streamlines computed using the edge with
highest probability to select a direction.
Random direction. In order to simulate different scenarios,
depending on whether to mimic the movement of taxis, or
general traffic, the direction is chosen either uniformly at
random, or using the taxi probability respectively.
Streamlines should be used for visualizing the traffic flow
when the user is interested in analyzing traffic at a given in-
stant of time as it provides an “instantaneous” view of the
vector function. Pathlines, on the other hand, should be used
when the user intends to look at the traffic flow over a larger
time interval. This is because, in an abstract sense, the path-
lines provide a temporal history of the flow over the said
time interval. Using any of the above choices for computing
the streamline or pathline, will result in a smooth trajectory.
However, in case of streaklines, it is possible for particles in-
jected at different times into the flow to take different paths,

Figure 4: A sample
traffic function.
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Figure 5: The traffic function of Manhattan is displayed us-
ing glyphs (a). Given the multiple directions a particle can
take at a node of the graph, we propose different direction
choices for computing flow lines depending on the aspect of
the traffic the user wants to visualize (b,c,d,e).

depending on the dynamics of the traffic. Fig. 5(e) shows a
streakline computed from a single seed location, using the
edge of highest speed to select the direction. Note that there
are different components for this streakline, indicating fre-
quent changes in the traffic dynamics.

5.2.2. Global Visualizations

Having a “big picture" of the traffic is essential to study pos-
sible global trends in the traffic. We accomplish this through
the use of two global techniques.

Color map. In this visualization, the user can view one of
the variables of the traffic function, the speed distribution or
the taxi distribution, using a color map. Multiple roads allow
for two-way traffic. In such a case, it would be possible to
visualize the quantity only across one direction. When using
speed distribution, we choose the direction of lowest speed,
while for taxi distribution, we choose the direction of largest
distribution. Alternatively, the user can also view the distri-
butions along a single direction. The user can interactively
change the color map that is used.

Glyphs. We use arrow glyphs to visualize the traffic func-
tion. The size of the arrow is mapped to the speed, and we
map the taxi density to opacity. While this visualization is
useful when viewing a small region, such a visualization gets
cluttered when glyphs are used to visualize a large region.
This can be observed in Fig. 5(a).

5.2.3. Visualization Choices and Filters

In addition to the visualizations described above, we support
various filters and options to help user visualize different as-
pects of the traffic function. When displaying flow lines, the
user can either color them based on direction, or based on
time. In the former case, two different colors are used to vi-
sualize the stream lines moving northward and southward re-
spectively. In the latter case, a color map is used to indicate
the time. Again, the user can choose and modify the color
map that is used. The user can also specify the start time and
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Figure 6: Orbits found at different times of the day. Note that
a few orbits like the ones around a school and the parking
lot occur only at certain times, while the ones near Holland
tunnel and Washington Square occur more frequently.

duration for which the flow line is computed. The user can
then filter them based on average speed of flow lines.
Choosing good seed points is important to obtain effec-
tive visualizations. In addition to allowing users to choose
seed regions, we also automatically generate seed points. In
case the user is interested in flow of regular traffic, the seed
points are selected uniformly at random. If the user is inter-
ested in taxi movement, then the seed points are generated
using the global probability distribution obtained using the
density parameter of the traffic function. This ensures that
the concentration of taxis are reflected in a realistic manner.

5.2.4. Animation

Animating movement of multiple particles for short dura-
tions helps observe the traffic dynamics of a city. It is par-
ticularly useful for simulating probable traffic flows. During
the animation, we explicitly distinguish between two types
of vehicular traffic — taxis and non-taxis. All the filters and
options discussed above applies to animations as well.

6. Traffic Dynamics in Manhattan

Our visualizations were demonstrated to experts from NYC
DoT and TLC. In addition to providing feedback on our re-
sults, they also used our visual interface to study specific
cases to test a series of hypotheses. Below, we discuss case
studies where we show how the techniques we propose can
be used to explore mobility patterns in Manhattan, and report
on insights obtained from the experts.

The traffic patterns typically remain the same during a
given season, and varies across seasons. When not target-
ing a specific day or event, users can explore traffic mobil-
ity patterns for a given season. Unless otherwise mentioned,
we use the function corresponding to the summer months of
2011 in this section.

6.1. Identifying Traffic Bottlenecks

Locally slow moving traffic can be identified by tracking
flow lines computed using the direction of slowest speed.
Traffic jams typically start within a small region and propa-
gate to neighboring regions [JSS12]. Experts from the DoT
are interested in identifying such regions so that they can
design and employ policies to ease congestion and improve
traffic flow. By looking at just the traffic speeds, they can get
a big picture of the traffic patterns, but looking at local traffic
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Figure 7: Pathlines at different time periods showing the
most probable flow of taxis. Note that the pathlines tend to
cross into Upper Manhattan only in the latter part of the day.
The direction is color encoded from yellow to red.

flow allows them to pinpoint specific regions to focus on in
order to analyze different bottlenecks.

Since we are interested in traffic bottleneck at a given in-
stant over time, we decided to explore streamlines at differ-
ent time instants, computed using direction of slowest speed.
During this exploration, we observed that streamlines from
seed points in certain areas converged into orbits. A subset of
these orbits, especially those that span small regions (such as
aneighborhood block), corresponds to a closed loop of roads
where the speed of traffic flow is slower than in neighboring
roads, potentially indicating the presence of congestion.

Fig. 6 shows the different orbits found during three differ-
ent time steps in the lower Manhattan area. The experts were
particularly interested in a few specific orbits highlighted in
this figure. There was an orbit at the entrance of Holland tun-
nel that was present during most of the day. This is due to the
traffic moving towards Jersey City which concentrates in this
area. There was an interesting orbit surrounding a block that
hosts a school. We found this orbit only at 8am — the dropoff
time. When looking at the set of orbits at 4 pm, the experts
immediately identified the one around a parking lot. They
mentioned that it was very difficult to find parking in that
area, as a result, people often double park for short periods,
causing the traffic congestion.

In addition to the illustrated orbits, we also found larger
orbits (surrounding multiple blocks) in different parts of the
city at various times. While it is not immediately clear as to
what these signify, we intend to further explore such phe-
nomena in the future together with the experts. Congestion
in general can surface in various patterns, and we believe that
orbits is just one of them. In our current implementation, we
do not automatically detect orbits, so it is possible that many
such orbits might be missed out (depending on the randomly
selected seed points). However, given the interesting results,
we plan to explore topology-based techniques on the traffic
function in the future to identify traffic patterns.

6.2. Taxi Patterns

Experts from TLC were interested in identifying common
roads taken by taxis. This will help them identify promi-
nent locations to place data capturing sensors in order to
collect data from taxis at regular intervals. We accomplish
this through the use pathlines to visualize the general flow
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Figure 8: Traffic trends in Manhattan. This sequence of
maps shows the visualization of the mean speed (in MPH)
of traffic on all Fridays from 8 am until midnight. Note the
change in traffic trends during different times of the day.

patterns of taxis in Manhattan. Fig. 7 illustrates the pathlines
computed using the most probable direction for four differ-
ent time steps. The seed points were selected to be in Lower
Manhattan area, and the pathlines were computed for a time
period of 20 minutes. While the pathlines confirm that the
flow of taxis are usually over the avenues, the shape of the
lines also indicates the general direction of flow. For exam-
ple, at 8 am we observe that the probability of taxis moving
beyond Midtown is low, and therefore the pathlines do not
extend beyond Central park. As the day progresses, we no-
tice that taxis tend to move more towards Upper Manhattan.

6.3. Traffic Patterns

Traffic trends on Fridays. In order to get a global view of
the general trend in Manhattan’s traffic on Fridays, we vi-
sualize the speed of traffic using a color map. For this ex-
periment, we divided the day into hourly time intervals, and
used all the taxi trips that happened on all Fridays during
Summer (June, July, and August) to compute the traffic func-
tion. Fig. 8 illustrates the various trends at different times of
the day. We observe that the speed decreases during the day
starting from 8 am and remains almost the same during the
afternoon, indicating an increase in traffic movement. This
is especially true in lower and middle Manhattan, where the
business district and many tourist spots are located. An in-
teresting point to note is that the traffic remains slow even
at 8 pm in parts of lower Manhattan, which hosts a lot of
restaurants. We also observe that the speed of traffic in and
around Time Square (green rectangle) is slow at this time.
High speed traffic flow. Path lines of short time duration
can be used to indicate the general direction of traffic flow.
In this example, we are interested in identifying the variation
in speeds between north-bound and south-bound traffic be-
tween Upper Manhattan and Lower Manhattan, respectively.
We accomplish this by visualizing short path lines, where
the choice of direction was based on highest speed. Fig. 9

Figure 9: Short 1 minute pathlines are used to identify di-
rection of high speed traffic flow. Red pathlines indicate
northward direction, while blue pathlines indicate south-
ward movement. Note that the direction of high speed is up-
ward during the day, and reverses at 5 pm.

shows high speed traffic flow at different times of the day.
In particular, direction of high speed is usually northwards
during the day. This can be seen by the number of red path-
lines at 8 am. Interestingly, the direction of high speed traffic
flow reverses at 5 pm. This is the time people usually return
home from work, thus resulting in slower northward moving
traffic. This reverse in direction was found only during the
evening time period. Later during the night, the direction of
high speed was evenly spread towards both directions.

We also observe that the direction of high speed traffic is
usually along the avenues (vertical), and that of low speed
traffic is along the streets (horizontal). This is illustrated by
the pathlines in Fig. 5(b) and 5(c). This is because the traffic
signal is longer along the streets than avenues.

6.4. Simulating Road Blocks

Analysts at the DoT are also interested in understanding
traffic patterns when roads are blocked. In particular, how
the speeds vary, and how they effect the flow. Such road
blocks are common in Manhattan, for example during pa-
rades. To support the study of what-if scenarios and help
decision makers plan for upcoming events, we can simulate
road blockage. Policies can then be designed to better handle
such road blocks in the future.

Since we focus on historical data, we know that the trips
that occurred during a road block event would not pass
through the corresponding roads. Computing routes for such
trips is accomplished by setting the distance of the corre-
sponding edges of the road network to infinity during the
duration of the event. This ensures that no taxi trip during a
road block event takes a route involving the blocked roads.
The traffic function for the time period of the blockage is
then computed using this modified graph. The set of blocked
road segments were obtained by looking at roads where the
density of the taxis was zero [DFD* 14]. For this experiment,
we chose to simulate the road block that happened on 24
November 2011 between 34th and 42nd Street due to the
Macy’s Thanksgiving Day parade. In particular, we are in-
terested in studying the transition of traffic flow when the
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Figure 10: Simulating traffic flow during road blocks. The
streamlines are computed from the set of blue seed points.
The direction of highest speed was used for computing the
path taken. The changes in the streamlines indicates that the
speeds of the roads in the blockage region initially increases
during the unblocking period, before stabilizing to normal
flow. The direction is color encoded from yellow to red.

road block is removed. We therefore choose streamlines to
visualize the phenomena at different time instants.

Fig. 10 shows a set of streamlines, where the seed points
are chosen to be close to region of the road block. We are
interested in observing the change of high speed flow pat-
terns, and therefore the choice of direction while computing
the streamlines was direction of highest speed. The varia-
tion in streamlines are shown at different periods — when the
roads were blocked, the instant when the block was removed,
and once the traffic flow stabilizes after the event. Note that
when the roads open up to traffic, the streamlines which was
otherwise moving along avenues, now passes through the
roads that were blocked. This is because when those roads
were unblocked, the speed along these roads become greater
than the neighboring roads. This is due to lack of vehicles on
these roads at this time. However, the traffic stabilizes back
to normal flow, which is indicated by the streamlines again
following the normal pattern.

7. Discussions and Future Work

Closest path algorithm. The identification of correct routes
taken by a taxi is dependent on the number of way-points
n used for computing the closest paths. While each taxi trip
could involve different number of way-points, it is computa-
tionally expensive (exponential) to traverse through this en-
tire search space. In practice, at least for the sample of the
taxi trips for which we had the actual route, we found that
using n = 1 resulted in close to accurate predictions of the
taxi routes (see Appendix B). Additionally, using n = 1 also
results in an efficient linear time computation which is an
advantage especially due to the large number of trips that
has to be processed. Further, we also assume that there are
no loops in the trip routes given the large number of small
length trips that happen (Appendix E). In future work, we
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plan to explore techniques which can efficiently provide bet-
ter correctness guarantees.

Traffic function computation. The number of closest paths,
k, is an important parameter for computing the traffic func-
tion. Using a small value for k could potentially miss iden-
tifying the actual routes taken. In order to identify a good
value for k, we picked a time period, and computed the traf-
fic function for varying values of k. As k increases, more
paths in the resulting set have lengths significantly different
from the actual length thus decreasing the weight assigned to
these paths. Such paths therefore have very little influence in
the traffic function. We found k = 20 provided a stable traffic
function (see Appendix D).

While we can vary the size of k and / or n based on the
length of a trip, we believe this will not provide a significant
improvement in the accuracy since most of the taxi trips that
happen in Manhattan are of short lengths (Appendix E).

Our model assumes that in a given trip, each road will
be traveled at the same speed. While it is true that the av-
erage speed of a trip is not necessarily equal to the speed
of a particular road segment, given the large number of di-
verse trips on each road segment, we expect the averaging to
converge to the actual speed. This property was confirmed
during validation of the traffic model. Additionally, this as-
sumption makes computation of the traffic model possible
in linear time, and thus handle the large amount of trips (ap-
proximately 170 million trips per year). In future, we plan to
use additional information such as the number of lanes and
vehicle capacity of different roads to improve our model.

Visualization using color map. The computed traffic infor-
mation includes more information than what is visualized
using color maps. In particular, there is data on traffic speeds
and densities along both directions on any given two-way
street, as well as information on the uncertainty of the com-
puted data. While these quantities are important, it is not
clear how these can be represented in a single image without
adding clutter. We intend to investigate this in future.

Expert feedback. The focus of this work was twofold — ob-
tain an efficient scalable traffic model; and the novel adap-
tation of vector field techniques for visualizing traffic flow
and its advantages. The developed system was a proof-of-
concept prototype using which we could demonstrate our
techniques to experts and obtain feedback on the usefulness
of our techniques for their analyses. As a next step, we intend
to focus on the usability and user interaction of our system
so that it can be deployed at the different NYC agencies.
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