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Abstract—Extracting and analyzing crime patterns in big cities is a challenging spatiotemporal problem. The hardness of the problem is
linked to two main factors, the sparse nature of the crime activity and its spread in large spatial areas. Sparseness hampers most time
series (crime time series) comparison methods from working properly, while the handling of large urban areas tends to render the
computational costs of such methods impractical. Visualizing different patterns hidden on crime time series data is another issue in this
context, mainly due to the number of patterns that can show up from the time series analysis. In this paper, we present a new
methodology to deal with the issues above, enabling the analysis of spatiotemporal crime patterns in a street-level of detail. Our approach
is made up of two main components designed to handle the spatial sparsity and spreading of crimes in large areas of the city. The first
component relies on a stochastic mechanism from which one can visually analyze probable×intensive crime hotspots. Such analysis
reveals important patterns that can not be observed in the typical intensity-based hotspot visualization. The second component builds
upon a deep learning mechanism to embed crime time series in Cartesian space. From the embedding, one can identify spatial locations
where the crime time series have similar behavior. The two components have been integrated into a web-based analytical tool called
CriPAV (Crime Pattern Analysis and Visualization), which enables global as well as a street-level view of crime patterns. Developed in
close collaboration with domain experts, CriPAV has been validated through a set of case studies with real crime data in São Paulo -
Brazil. The provided experiments and case studies reveal the effectiveness of CriPAV in identifying patterns such as locations where
crimes are not intense but highly probable to occur as well as locations that are far apart from each other but bear similar crime patterns.

Index Terms—Crime Data, Spatio-Temporal Data, Visual Analytics, Crime Hotspots, Stochastic Matrix

✦

1 INTRODUCTION

C RIME hotspot analysis has been one of the main resources
employed by public security agencies to plan police patrolling

and design preventive actions [22]. Hotspot detection methods
typically account for the absolute number of crime events in
each specific location, neglecting sites where crimes are likely
but do not occur in large numbers, mainly when compared to their
surroundings. Areas with a high probability of crimes can be more
harmful to the community than a place where the crime wave occur
in a short period of time [70].

The issue above derives from the fact that there is no consensus
about a spatial hotspot definition. Distinct definitions can lead to
different hotspot configurations. Moreover, hotspot computation
strongly depends, among other factors, on the discretization applied
to the spatial domain. The most common spatial discretization is a
regular grid with cell granularity varying according to the scale on
which the analysis should be performed, ranging from dozen meters
to large areas covering entire neighborhoods. However, crimes are
mostly concentrated in “micro” places that are relatively stable
over time [39]. Therefore, fine-grained crime analysis demands a
level of discretization that should reach the scale of streets, which
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is difficult to be obtained with regular grids [72], as the density and
arrangement of streets tend to vary considerably across a city.

Another important aspect related to hotspot analysis is the
reasons that lead to the appearance of a hotspot in a given location.
According to environmental criminology, the concentration and
persistence of crimes in certain locations are not random; that
is, they occur due to prevalent characteristics present in those
locations [59]. Early studies demonstrate that crimes in a particular
location are related to demography [3], [4], population [37], [63],
socioeconomic factors [23], [51], [52], and unemployment [44],
[45], [54] in that location. Consequently, changes in those properties
over time may impact crime activities, making the temporal analysis
of hotspots a fundamental task [16], [30]. Nevertheless, most
hotspot-based analytic tools, mainly the ones in use by security
agencies, do not enable resources to identify and group hotspots,
according to their behavior over time, hampering the identification
of factors that can make crime viable or not.

In collaboration with two sociologists with extensive experience
in the study of violence and crime, we have designed a visual
analytic tool to scrutinize crime activities in a street-level of detail.
Considering that crimes occur in the streets, our approach relies
on street networks as the spatial discretization. Specifically, the
discretization domain is a network where edges correspond to the
streets and nodes represent streets’ intersections, thus avoiding the
issue of finding a proper level of refinement commonly present
in grid-based methods. The proposed methodology relies on
mathematical and computational mechanisms to identify hotspots
based not only on the intensity of crimes but also on their
probability. Moreover, we rely on a deep learning model to embed
crime time series in high-dimensional space to make possible the
identification of hotspots with similar behavior over time, a task
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Fig. 1. The proposed street-level crime visualization methodology, CriPAV, comprises three main steps. Hotspot Detection: identifying hotspots
based on crime intensity and crime probability. Finding Similar Hotspots: hotspot time series embedding (Hotspot2Vec), clustering, and projection
into a visual space. Relating Crime & Urban Infrastructure: finding the relation between urban infrastructure and crimes.

difficult to perform with conventional hotspot analysis tools. The
proposed methodology, illustrated in Fig. 1, has been assembled
in a visualization system called CriPAV, which, besides enabling a
more general characterization of hotspots, provides visual resources
to identify hotspots with similar dynamics over time. As we show
in the provided use cases, identifying crime hotspots with similar
time behavior helps the understanding of how changes in urban
infrastructure impact crime activity over time.

In summary, the main contributions of this work are:

• A new method to identify crime hotspots based not only on the
number of crimes but also on the probability of them occurring.
By combining the probability and intensity of crimes in a scatter
plot, our methodology enables visual identification of locations
where crimes are concentrated as well as sites where crimes
are frequent but do not necessarily occur in large amounts.

• A method to create groups of hotspots with similar time
dynamics despite their spatial location. The method relies on
a deep learning autoencoder embedding mechanism called
Hotspot2Vec.

• CriPAV, a visualization-assisted analytical tool that integrates
a set of linked views to uncover relevant information about
hotspots. CriPAV enables mechanisms to identify, explore, and
analyze crime hotspots in a street-level of detail, enabling users
to explore the possible causes for the observed crime patterns.

• A set of case studies that attest the effectiveness and usefulness
of the proposed methodology to reveal interesting phenomena
about the dynamics of crime in São Paulo - Brazil.

2 RELATED WORK

In order to better contextualize our methodology, in this section,
we discuss previous work related to crime prevention through
environmental design, hotspot identification, and time-oriented
data visualization.

Crime Prevention Through Environmental Design - CPTED
Since socio-demographic, spatial, and temporal attributes are
essential information for understanding the dynamics of crimes,
several studies focus on analyzing the relation between those factors
and individual crime types. Caplan et al. [20] propose Risk Terrain
Modeling (RTM) as a methodology to analyze crime based on the
dynamic interaction among social, physical, and behavioral factors
that occurs in particular places. Some works search for correlations
between crime and liquor stores [26], [41], [42], [56], subway
stations [58], and parks [28]. Cozen et al. [24] divide physical
characteristics related to crime into six categories: surveillance,

territoriality, activity support, access control, target hardening, and
image management. Image management promotes the maintenance
of the environment as a way to contain crime, as vacant, poorly
maintained places, damaged buildings, graffiti, and garbage are
commonly associated with high crime rates [24].

As discussed above, CPTED methods aim at detecting correla-
tions between characteristics of the environment and crimes, but
they can hardly figure out how such correlations evolve. In contrast,
our approach enables the analysis of the surroundings of specific
locations to assist users in understanding how the environment
affects crime over time. Following an approach similar to image
management, our methodology relies on a temporal photo gallery
to assist in the analysis of how environmental factors and crime
patterns evolve.

Hotspot Identification Techniques Hotspot identification tech-
niques aim to identify locations with high risk of crimes, relying on
a wide range of methodologies such as Kernel Density Estimation
(KDE) [10], [49], [60], point and glyph based methods [21], choro-
pleth mapping [43], local auto-correlation [25], [66], clustering [6],
[40], and statistical spatio-temporal analysis [12]. Some of those
methodologies have several variants, for example, KDE, which has
a family of variants such as Marching Squares KDE (MSKDE) [27],
Network-constrained KDE (NKDE) [61], and Network-constrained
Getis-Ord Gi* [61].

Hotspot detection methods, mainly based on aggregation
schemes, rely on regular grids to perform the computation, facing
the issue related to the scale (grid refinement) on which the analysis
should be performed. To get around the grid refinement problem,
some works propose to compute hotspots based on multiple
resolutions [72], aggregating crime events in scales that range from
states and cities to census regions and neighborhoods. A growing
body of research suggests that crime hotspot should be computed
in micro-places [15], as crime activities tend to concentrate in
particular street locations [12], [15].

Hotspot detection methods search for regions with a high
prevalence of crimes, neglecting locations where crimes are not
so intense but highly probable. The methodology presented in this
work proposes a new scheme to identify hotspots in a street-level
of detail, which accounts for not only the intensity of crimes, but
also its frequency over time.

Time data visualization The literature about time-varying visual-
ization methods has extensively been reviewed and organized in
different surveys [1], [2], [5], [48]. Aigner et al. [1], [2], for instance,
presents a systematic review that categorizes existing approaches
into three main groups: time, data, and representation. Bach et
al. [9] classify time-varying data visualization techniques based
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on space-time cube operators. Some approaches unify temporal
and spatial analysis in joint visualizations [7], [29]. To better
contextualize our contribution, we focus on techniques that rely on
feature extraction or data transformation mechanisms to leverage
visualizations of phenomena presented in (spatial) temporal data.

Data transformation is the main resource to uncover hidden
patterns in time-dependent data. For instance, Zhang et al. [74]
propose the VizStruct system, a visualization tool to map time
series to a visual space using discrete-time Fourier transform (DTF).
More specifically, time-dependent gene data is projected to a two-
dimensional visual space such that the projected positions reflect the
relation between gene structures in the original data set. Woodring
et al. [73] rely on wavelet transformation to represent and visualize
time series in a multi-resolution manner. Lekschas et al. [53]
propose a feature-based technique for interactive visual pattern
search in sequential data such as time series. For that, they used a
convolutional autoencoder for unsupervised representation, active
learning, and interactive feedback-driven adjustment.

In the context of crime analysis, Garcia-Zanabria et al. [33],
[34] propose systems with multiple linked views to represent and
visualize the dynamics of crime over time. Malik et al. [57] propose
the Visual Analytics Law Enforcement Toolkit (VALET), which
enables linked views such as calendar and line charts to assist users
understanding the time evolution of crimes. Godwin et al. [35]
propose a cumulative temporal view as part of the HotSketch
dashboard system. Most of the methods described above rely on
aggregation schemes (periods of the day, days of the week, months,
etc.) to visualize time patterns. However, aggregation works as a
low-pass filter, hidden patterns with small magnitude and smoothing
out abrupt changes.

In contrast to the methods described above, our approach relies
on a machine learning model to automatically embed time series
to a Cartesian space, rendering the comparison of crime time
series easier and more accurate. Moreover, the embedding scheme
identifies groups of time series of crimes with similar behavior.
Thus, making it possible to uncover patterns of crimes even when
they occur in locations far apart from each other, a trait not present
in most of the methods described above.

3 CHALLENGES IN CRIME ANALYSIS AND ANALYT-
ICAL TASKS

This research is mainly focused on addressing the spatio-temporal
aspects of crime analysis. To understand our study’s motivation, we
first present the challenges that experts face on this subject, then
thoroughly define nomenclature and finally present the analytical
tasks that guided our system’s design.

3.1 Challenges

A long-term collaboration (almost four years) with two sociologists
with a lifelong carrier in the study of violence and crime enabled
us to understand the particularities of crime events that, without
proper care, might hurt or undermine the analysis of crime. We had
several meetings, including some seminars, with the experts and
their students to discuss the main issues they faced to perform their
analysis, which we summarize in the following.

Crime events occur in time and space, so it is necessary to
aggregate crime events in time and space. Spatial aggregation can
be made in census units, police districts, or other units of interest,
such as cells of a regular grid, which is one of the most popular

Fig. 2. Challenges in crime analysis. (Top) a heatmap of crime occur-
rences in São Paulo is aggregated by a simple squared grid. (Bottom) a
time series of crime occurrences in different locations. Both representa-
tions show the challenges of properly identifying critical regions to study
criminality and time patterns that emerge with crime occurrences.

choices. Top image in Fig. 2 illustrates a KDE-based hotspot
visualization in a regular grid discretization. Notice that the hotspot
identification depends on the level of refinement of the grid. For
instance, in Fig. 2, if we consider the dashed grid as the basis for
the discretization, the whole-cell marked with the number 4 would
be considered a hotspot, even though crimes are concentrated in a
small portion of the cell. Finding a proper resolution to define the
grid cell size is not an easy task, and an inappropriate choice can
hamper the analysis, leading to inaccurate conclusions.

Another issue when computing hotspots is that locations with a
high concentration of crimes tend to be highlighted as the important
hotspots, dimming sites where crimes are frequent but do not occur
in high volume. For instance, in Fig. 2, the cells marked as 2,3,4,
and 5 could be identified as hotspots, as they present a high number
of crime events (see the associated time series on the bottom in
Fig. 2. In contrast, the region marked as 1 in Fig. 2 would hardly
be identified as a hotspot since the volume of crimes in that region
is not comparable to those marked as 2,3,4, and 5. However, as
shown in the corresponding time series (first time series on the
bottom), crimes are quite frequent in the region 1, that is, there
are crime events registered during the whole period, thus making
region 1 worth of attention. Therefore, it is important to define
hotspots taking into account not only to volume of crimes but also
the frequency they happen in each particular location.

The temporal behavior of crime events in each location is
also an important phenomenon to be analyzed. Specifically, the
dynamic of crimes in particular locations can be associated with
socioeconomic and urban factors; thus, identifying such temporal
patterns can assist in understanding the interplay between crime
and those factors. The time series on the bottom of Fig. 2 illustrate
different temporal crime patterns related to locations where crimes
were intense for a while and then vanish (region 2 and 5), locations
that face a sudden increase in crime activity (region 3), and
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Fig. 3. Grid thematic mapping with different resolution parameters (one
of the most common hotspots mapping techniques): (left) 5×5, (center)
15×15, and (right) 30×30 cells.

regions where crime are fairly frequent, changing only on the
intensity (regions 1 and 4). Extracting the temporal crime patterns
automatically, grouping them according to their similarity, and
enabling analytical tools to assist the experts in their investigation
are of paramount importance.

In summary, Fig. 2 illustrates the main challenges we faced
when designing and developing the proposed tool, namely, a proper
spatial discretization, a flexible mechanism to hotspot detection
that accounts for volume as well as the frequency of crimes, and
the identification of locations with similar temporal crime behavior.
Moreover, designing a visual analytic tool that enables a versatile
exploration of hotspots with similar behavior was another challenge
we faced during the development of CriPAV. Before detailing how
we tackled the issues above, we settle the nomenclature and clearly
define the analytical that guided our tool’s design.

3.2 Nomenclature

The following terminology will be employed throughout the
manuscript.

Anchor Point is the smallest unit of study in a street network. In
our context, anchor points are the intersections of streets. Fig. 4-
right shows an example of a region modeled as a network, where
the black nodes are the anchor points.

Time unit is the time scale that the temporal data is aggregated,
for example, weekly or monthly.

Crime time series is the temporal evolution of crimes in each
particular location. More specifically, it is a time series discretized
in time units associated with each anchor point representing the
dynamics of crimes over time.

Crime Type is the type of crime activity. In this work, we focus on
three categories: passerby, commercial establishment, and vehicle
robbery.

Crime Intensity is the number of crimes in each anchor point in
a given time unit. The intensity can be aggregated in a time unit
interval.

Hotspots are anchor points with relevant crime activity. In our
context, they are anchor points where crime events are of high
intensity, high probability, or both.

Hotspot temporal groups are groups of anchor points whose time
series share similar behavior. This concept enables the analysis
over time, making it possible to identify groups of similar hotspots.

Crime Pattern accounts for the prevalence of criminal events in
a given location over time. In our context, a crime pattern in an
anchor point refers to the temporal behavior of the corresponding
crime time series.

3.3 Analytical Tasks
After understanding the challenges that the experts have faced to
accomplish their studies, we compiled the tasks that the proposed
analytical tool must enable to tackle those challenges.

T1. Analyze street-level crime hotspots Define and depict crime
hotspots on a street level of detail, aiming to identify locations with
similar crime patterns.

T2. Probability × Intensity crime hotspots. Enable a mechanism
capable of identifying hotspots based not only on the absolute
number of crimes but also on the probability of their occurrence.

T3. Crime Patterns Analysis Enable the analysis of crime patterns
in a particular hotspot or a group of hotspots.

T4. Analyze the surroundings of a hotspot Scrutinize urban
characteristics around a hotspot.

T5. Group similar hotspots. Group hotspots according to the
similarity of their patterns to visualize the spatial distribution of
similar hotspots and possible causes for the observed pattern.

T6. Compare hotspots’ groups. Support the comparison of
hotspot groups according, making it possible to analyze the patterns
of different groups and the dispersion of hotspots within a group.

The proposed visual analytic tool, CriPAV, has been designed
to integrate several linked views devoted to making the tasks
above doable. The working flow underlying CriPAV consists of
three major components (see Fig. 1): i) hotspots detection, ii)
grouping of hotspots with similar crime patterns, and iii) analysis
of the surroundings of hotspots. Before detailing each component
implemented in CriPAV, we motivate our decision of selecting the
street map as the basis for the spatial discretization.

4 STREET-LEVEL DOMAIN DISCRETIZATION

Establishing a proper spatial discretization is crucial to define
the crime patterns. As already discussed, most techniques rely
on regular grids where each cell can cover dozens or hundreds
of square meters, thus impacting the aggregation of crime events.
Fig. 3 shows examples of grid discretization using three different
levels of refinement. It could be noted that the grid size impacts
not only the precise location of crime events but also on which cell
is highlighted as a hotspot. For instance, in the courser resolution
(Fig. 3-left) cells that are neighbors of a and b are also pointed
out as hotspots, even though crimes are mostly concentrated in a
and b . Moreover, identifying the factors that might be generating
the crime opportunity is also not straightforward when the level of
refinement is not properly chosen. An example is depicted in Fig. 3,
where the high intensity of crimes in a might be associated
with the river that crosses the region, a hypothesis that can only be
raised after refining the grid (Fig. 3-middle and right). Also, the use
of regular grids can limit the temporal analysis of crimes. Suppose
that crime events are continuously registered in a street corner
during a period and, after a while, it moves to a nearby corner. In a
grid representation, such a temporal behavior can hardly be caught
if both corners lie on the same grid cell. Therefore, since urban
crimes tend to take place in micro-places such as street segments
and corners, accomplishing a spatial discretization in a street-level
of detail is a meaningful choice.

Given the issues related to regular grids and recent studies,
crimes rarely concentrate on regions larger than a street segment or
intersection [11], [14], [67], [71], we decided to adopt street corner
as the spatial ‘discretization unit.’ This decision has been further
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Fig. 4. Data modeling process. (left) Region of study with anchor points
(black dots) and crime events (red dots). (center) Approximation of each
crime event to the nearest anchor point. (right) Final street network, each
anchor point contains a temporal series.

supported by the domain experts that have collaborated with this
project. According to them, police officers tend to report the crime
location as the intersections [14], as the exact location of a crime
is rarely known precisely. Moreover, studies suggest that criminals
tend to act on street corners [46], [47] since there is a tendency of
the population to meet and socialize on street corners [55].

Specifically, we model the spatial domain as a graph derived
from the street network map, where street intersections are the
nodes (i.e., anchor points) and street segments correspond to edges
of the graph. Crimes are spatially aggregated in the graph nodes,
as illustrated in Fig. 4. On the left, in Fig. 4 we show a region of
interest with anchor points (black points) and crime events (red
dots). Each crime event is aggregated to the nearest anchor point, as
illustrated in the middle image of Fig. 4, resulting in a network with
crime events associated the each node (Fig. 4-right). Crime events
are then aggregated temporally according to the time discretization
(weeks or months) in each node, given rising to each anchor point’s
crime time series.

5 HOTSPOTS DETECTION

As illustrated on the left of Fig. 1, hotspot identification is a
primary component of CriPAV. Hotspots are visually defined from
a ‘Probability × Intensity’ scatter plot, where each dot corresponds
to an anchor point. The intensity axis of each anchor point is the
temporally aggregated number of crime events in the anchor point
divide by the maximum number of crime events among all anchor
points. The computation of how likely crimes are in each anchor
point is more intricate, and it will be detailed in the following
subsection.

5.1 Probability of Crimes

The probability of crimes in each particular anchor point is
computed based on the stationary state of a stochastic matrix
built from the crime time series. In order to better guide the reader,
we need to settle some mathematical concepts.

Probability vector. A distribution vector p is called a probability
vector if all its elements are non-negative real numbers whose sum
is equal 1, i.e., pi ≥ 0, ∑

n
i=1 pi = 1.

Stochastic Matrix. An n× n square matrix P = (Pi j) is called
stochastic if each row (or column) is a probability vector. Stochastic
matrices are used to describe the transitions of a Markov chain [68]
where each entry Pi j is the probability of changing from state i to
state j.

Under mild conditions, it can be shown that a stochastic matrix
has an eigenvalue equal to 1 whose corresponding (left) eigenvector
is a probability vector called the stationary vector of the stochastic

matrix P. In mathematical terms, the stationary vector is given by
the solution of the following equation:

πP = π,
n

∑
i=1

πi = 1 (1)

In our context, the probability of crimes in each anchor point is
given by the stationary vector of a stochastic matrix built from the
crime time series in each anchor point. The construction of such a
stationary matrix is detailed in the following.
Computing the Stochastic Matrix Suppose a spatial discretization
(street network) with n anchor points V = {τ1,τ2, . . . ,τn} each
associated to a time series T = {t1, t2, . . . , tm} describing crime
events aggregated into m time instants. We can define a function
f : V ×T → R that associates the number of crime events f (τi, t j)
in the anchor point τi in the time slice t j. We denote by D the n×m
matrix where each entry Di j corresponds to f (τi, t j). From f (τi, t j)
we define an occurrence matrix D̂ where D̂i j = 1 if f (τi, t j) > 0
and D̂i j = 0 if f (τi, t j) = 0. D̂ is a binary matrix where each entry
D̂i j indicates whether crimes took place in the anchor point τi in
the time slice t j.

From D̂ we define the n×n co-occurrence matrix P̂:

P̂ = D̂ · D̂T (2)

Each entry P̂i j of P̂ corresponds to the number of times that the
anchor points τi and τ j faced crime events in the same time slice,
that is, the number of times that crimes took place simultaneously
in τi and τ j. A large value of P̂i j indicates that τi and τ j present
similar crime activity over time. Dividing each row of P̂ by the
sum of its values, we end up with a stochastic matrix P, that is,
Pi j = P̂i j/∑

n
k=1 P̂ik. The entry Pi j corresponds to the probability

Pr(τi,τ j) of a crimes take place simultaneously in τi and τ j.
The reasoning behind the construction of the stochastic matrix

P is that certain crime types are seasonal, occurring concurrently
in different city locations depending on the day of the week, the
fortnight of the month, and the month of the year. Matrix P, as
defined above, captures such a seasonality, being able to point as
likely of crimes anchor points where crime activity is not intense,
but occurs concurrently with other anchor points.

Given the stochastic matrix P, the probability of crime occur-
rence in each anchor point is given by the stationary vector π of P.
That is, the probability of a crime event to occur in τi is the value
in the i-th entry in π .

5.2 Selecting Hotspots
The probability and intensity values summarizing crime activities in
each anchor point enable the use of a Probability vs. Intensity scatter
plot to visually identify anchor points based on their intensity,
probability, or both, as illustrated in Fig. 6(a).

In order to filter out relevant anchor points (i.e., high probability
and/or high intensity), we use a function g = [0,1]× [0,1]→ [0,1]
that assigns a value to each anchor point, as for example
g(probability, intensity) = ((1−α) ∗ probability+α ∗ intensity).
The value of α is the weight one wants to give to intensity of
probability when filtering the hotspots. The parameter α also
controls the slope of straight lines in the Probability vs. Intensity
plane that corresponds to the level sets of g. To select a certain
percentage k of the anchor points as hotspots, we can choose a
value of g such that k% of the anchor points are on the positive
side of the straight line. Fig. 6 illustrates the hotspot selection
methodology when α = 1 and α = 0.5, respectively. The dotted
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Fig. 5. (1) Region of interest. (2) Time series containing information of interest anchor points in (1). (3) Hotspot filtering in Probability versus Intensity.
(4) Hotspots clusterization based on Hotspot2Vec.

(a) Prob. & Inte. (b) Filtered Prob. & Inte.
with α = 1

(c) Filtered Prob. & Inte.
with α = 0.5

Fig. 6. (a) Probability versus Intensity scatter plot, (b) filtering based on
intensity and probability with α = 1, and (c) filtering based on intensity
and probability with α = 0.5, the red anchor points are the hotspots.

line represents the straight line chosen such that 5% of the most
relevant anchor points (on the top right) are chosen as hotspots.

We have implemented the linear hotspot selection mechanism
as an alternative to the interactive brush-based interactive tool,
as the users (domain experts) deemed the linear approach more
comfortable to use than a brush-based mechanism.

5.3 Validation

We created a synthetic data set with 14,000 anchor points and
120 time-slices representing months over ten years to evaluate the
hotspot selection approach. Fig. 5(1) shows the region of study
where anchor points are labeled based on five criteria: high intensity
& high probability (Fig. 5(2-A)), a normal distribution with mean
1.5 and standard deviation 3; low intensity & high probability
(Fig. 5(2-B)), a normal distribution with mean 0.5 and standard
deviation of 0.4; high-intensity & low probability (Fig. 5(2-C))
with mean 10 and standard deviation 2 until time-slice 20 and mean
0 and standard deviation of 0.2 for the remaining time. Crimes that
only occurs in the beginning and at the end of the time interval
(Fig. 5(2-D)) has a normal distribution with mean 2 and standard
deviation 0.5 from time-slice 0 to 30 and 80 to 120, with mean
0 and standard deviation 0.3 from 30 to 80 time-slice. Crimes
occurring only in the middle of the time interval (Fig. 5(2-E))
has been generated from a normal distribution with a mean of 3
and standard deviation of 0.2 from time slices from 40 to 80, and
mean 0 and standard deviation of 0.2 for the remaining time slices.
Values for all sites are rounded to the closest integer, and negative
values are set to zero. The anchor points with low intensity and low
probability are not of interest.

Given the time series on each anchor point, we calculate the
probability and intensity using the methodology described above.
Fig. 5(3) illustrates the probability vs. intensity scatter plot, where
points on the top-right of the dotted line (settled with α = 0.5)
correspond to the 5% most relevant anchor points. Notice that points
on the top-right correspond to group A (red points), presenting high

probability and intensity values. Bottom-right points correspond to
group B, anchor points with frequent but not intense crime rates
compared to A and C. Finally, top-left points correspond to group
C, where crimes are not frequent (low probability) but have a high
intensity in a certain period. The remainder points (orange and
light green) show a moderate level of probability and intensity.
Worth mentioning that by pushing the parameter to α = 1 (makes
the line horizontal), we miss group B. In this group, crime activity
is presented overall period of time but is not so intense as the
other ones. Computing the intense hotspots is done in the most
existing hotspot analysis tools, which is only a particular case of
our approach.

6 FINDING SIMILAR HOTSPOTS

Another essential task that our methodology must accomplish is
identifying hotspots with similar temporal behavior (see Fig. 1-
Finding Similar Hotspots). Finding the temporally similar hotspot
means searching for a similar time series, which is a difficult
problem. Methods such as Discrete-Time Wrapping can be used to
this end but with the price a high computational cost and instability
to noise [36]. Instead, we opt for a deep learning embedding
technique we called Hotspot2Vec.
Hotspot2Vec. We use an autoencoder to map each time-series
T S = {ts1, ts2, . . . , tsm} to a feature space. The autoencoder model
is trained with a set of time-series T̂ S = {t̂s1, t̂s2, . . . , t̂sm}, where
t̂si = 1 if tsi > 0 and t̂si = 0 otherwise, for all i ∈ {1, . . . ,m}. The
idea is to train the deep learning model to capture the temporal
behavior of crimes without considering the intensity of crimes.
Therefore, anchor points with crimes happening at the same time
interval will be considered similar, no matter the intensity of crimes
in each location.

Autoencoder is a well-known neural network model in which
the input and output are the same. The middle layer of the network
has a bottleneck that creates a compressed representation, aiming
to reduce the data’s dimensionality.

The autoencoder architecture consists of an encoder with
three pairs of 1D convolution and max-pooling layers. The first
two convolution layers have 16 kernels of size 3, and the last
convolution has a filter of size 3. In our case, the time series
contains 144 values, and in each convolution, the time series is
reduced by half, reaching a size of 18. We use convolutional layers
to capture local information around each step, matching time series
that differ by small shifts.

The decoder has a similar architecture to the encoder but
changing the max-pooling layers to up-sampling layers. All the
convolution layers use the Relu activation function except for the
last one, which uses a sigmoid function.
Grouping Similar Hotspots. The encoder’s output is used as
feature vectors, and a clustering algorithm is applied to group
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Fig. 7. CriPAV system: Hotspot (b), spatial (a and c), and temporal interactive views (d, e, and f) enabling the exploration of local regions while
revealing their criminal patterns over time.

hotspots based on their proximity in the feature space. We choose
a hierarchical variant of BDSCAN [32] called HDBDSCAN [19].
The choice for HDBSCAN is because it can automatically find
the number of clusters (as DBSCAN) without tuning several
parameters, relieving users of this task, which is essential for
domain experts with little training in machine learning.
Projection. Empirical tests showed that reducing the dimensional-
ity of time series to 18 still preserved good properties in capturing
their similarity. During our tests, we evaluated four possibilities for
the embedding space dimension: 72, 36, 18, and 9 (the temporal
series have 144 bins and we reduce the dimension by half in
each trial). The dimension of 18 turned out to be more stable and
consistent over the runs. To visualize the resulting embedding, we
relied on a modified version of the LAMP projection technique [50]
(github.com/lgnonato/LAMP), which maps the embedded time
series to a 2D visual space. LAMP is a computationally efficient
projection method that can be tuned to preserve labeled clusters
during the mapping [62]. Fig. 1-(Finding Similar Hotspots) shows
an example of the HDBSCAN clusterization and LAMP projection
(Grouping and Projection).

6.1 Validation
We use the same data created to validate the Probability×Intensity
hotspot selection to assess the proposed time series grouping
mechanism. After selecting the hotspots using the scatter plot,
we applied Hotspot2Vec and HDBSCAN to estimate the groups.
Fig. 5(4) shows the 2D projection resulting from LAMP. Notice that
three time series groups (C, D, and E) out of the five original ones
were properly clustered, while groups A and B were, as expected
projected on the top of each other, since the embedding does not
account for the intensity of crimes, they are considered similar.

7 VISUAL COMPONENTS OF CRIPAV
In collaboration with domain experts, we designed visual compo-
nents to integrate the hotspot detection and grouping mechanism
in a linked view interactive tool. This system, depicted in Fig. 7,
provides six components: (a) location view to visualize anchor
points and hotspots; (b) scatter plot showing the distribution of
anchor points according to their intensity and probability property;

Sec. T1 T2 T3 T4 T5 T6
Location view 7.1 ✓

Hotspot scat. view 7.2 ✓
Temporal Patt. Ploj. 7.3 ✓ ✓

B-Group chart 7.4 ✓ ✓ ✓
W-G Joy Chart 7.5 ✓ ✓ ✓
Physical view 7.6 ✓

TABLE 1
Methodological and visualization properties and their related tools.

(c) hotspots projection view in a two-dimensional space; (d) a
visual representation of hotspot groups; (e) visualization of time
series from each hotspot group; (f) a photo panel, showing images
of urban infrastructure over time for a selected anchor point. We
design these visual components in close collaboration with domain
experts and their requirements. Each view has been designed to
address at least one analytical task described in Sec. 3. Table 1
indicates the relation between the visual widget and the tasks
(columns). For instance, Within-Group Joy Chart and Between-
Group Chart account for three tasks. We detail each visual
component in the following subsections.

7.1 Location view

This view, depicted in Fig. 7(a), enables the visualization of anchor
points’ geographical location. Each node’s color depends on the
group it belongs to, which is computed as described in Sec. 6.
The location view is particularly useful to overview the spatial
distribution of hotspots and their similarity. Besides, it is possible to
show additional information in the background coloring the census
units according to a given property, for example, socioeconomic
and social vulnerability index (this resource will be exploited in the
case studies). Location view provides 2D and 3D visualization of
the hotspots, being possible to change visualization properties such
as size and opacity of the hotspots. Color opacity and elevation,
the latter only available in the 3D view, can be set to correspond to
the intensity or probability of the hotspots.
Anchor Point Selection. By a simple clicking in an anchor
point, Physical View shows the Google Street View photos in
the surroundings of the selected hotspots.
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7.2 Hotspot Scatter View (Probability vs Intensity )

Illustrated in Fig. 7(b), the hotspot scatter view shows the
Probability×Intensity scatter plot. To identify anchor points as
hotspots, one can use the linear discriminant filter function
described in Sec. 5 by tuning the parameters α and pct (percentage
of anchor points to be considered hotspots), although an interactive
brushing mechanism is also available.

7.3 Crime Pattern Projection

Once hotspots have been selected with Hotspot Scatter View, they
are grouped according to similarity, and the multidimensional
projection is performed to reveal their distribution in the feature
space. As shown in Fig. 7(c), hotspots are colored according to
their groups in the projection. Moreover, the legend on the right
encodes the label and the number of elements in each group.
Group Selection. By clicking in the label of a group, Location
View, Hotspot Scatter View, Between-Group Chart, and Within-
Group Joy Chart are updated to highlight only the data in the
selected group, making it easier for users to focus their analysis on
the selected group of hotspots.
Filtering. It is possible to select hotspots using a lasso selection.
The filtered hotspots are highlighted in the Location View, Hotspot
Scatter View, Between-Group Chart, and Within-Group Joy Chart.
Besides, one can analyze individual time series of selected hotspots
using the Within-Group Joy Chart.

7.4 Between-Group Chart

To better visualize the intra-cluster patterns, we create a visual
representation that summarizes the crime pattern in each group
(see Fig. 7(d)). This visualization shows the average time series
of each group and the standard deviation of the group’s time
series. The rectangular glyphs, whose size reflects the number of
hotspots in the group, are arranged to keep the most similar groups
closer to each other in the layout, following the proximity relation
observed in the Crime Pattern Projection View. The rectangular
glyphs arrangement is computed from an optimization procedure
similar to the method described in [38]. The Between-Group Chart
is useful to understand the crime patterns present in the data.
Group Selection. By clicking in a rectangular glyph, Location
View shows additional information encoded on the geo-map, such
as the socioeconomic and social vulnerability index.

7.5 Within-Group Joy Chart

This view relies on filled line plots (see Fig. 7(e)) to present, in each
line of the chart, the crime time series of the hotspots of a specific
group. This visualization aims to provide a detailed visualization
of the crime pattern in the hotspot group.
Time Series Selection. By clicking in a particular time series,
Physical View shows the photos of their surroundings.

7.6 Physical View

This view uses Google Street View to extract and organize photos of
the surroundings of selected hotspots over time (see Fig. 7(f)). Each
photo is a collage of many photos extracted during spatial padding.
This padding is accomplished for each time slice. Physical View
helps domain experts to understand the relationship between crime
patterns and the urban infrastructure over time.

8 IMPLEMENTATION

CriPAV is a web-based system over a python Flask server. The
system’s core is divided into data/space modeling, computation of
hotspots, and visualization modules. For the data/space modeling,
we used OSMnx [13] and NetworkX (networkx.github.io) python
libraries to extract the street network and to aggregate crime events,
respectively. To achieve interactive rates, we assign to each crime
record the nearest edge, vertex node. We also perform a street
network simplification to remove unnecessary vertices from the
street network. The computation of the stochastic matrix, node
probability, and intensity is performed using Pandas and Numpy
python libraries for hotspot identification. Finally, all visualization
resources have been developed based on JavaScript libraries: Deck-
GL (deck.gl) for the geo-map representations and choropleth
maps; PlotlyJs (plotly.com/javascript) for Probability×Intensity
representation; D3.js (d3js.org/) for the projection scatter-plot, line,
and area charts. We have developed an extra component to deal
with Google Street View photos and SKImage [69] python libraries.

9 CASE STUDIES
This section presents three cases involving real crime data from
São Paulo (the city of São Paulo) - Brazil. The case studies show
how CriPAV addresses the analytical tasks described in Sec. 3.3 in
three different scenarios. The first case study addresses T1, T2, and
T5, highlighting the importance of accounting for probability when
analyzing hotspots. The second case study focuses on the relation
between hotspots and socioeconomic factors, addressing T2 and
T4. The third case study aims to show the potential of CriPAV to
assist the experts in their search for possible explanations for crime
patterns, relating crime patterns to urban infrastructure (T3 and
T6). In all case studies, except when explicitly stated, we focus on
passerby robbery as the crime type.

All case studies use crime records assembled by domain experts
and provided by the Police Department of São Paulo (the largest
South American city with around 12 million inhabitants). The data
set consists of information on about 1,650,000 crime incidents
recorded from 2006 to 2017. We have worked with three crime
types: passerby, commercial establishment, and vehicle robbery.
Each record contains the census unit’s identification ID where the
crime took place, the date and time of the event, type, and geocode
location (i.e., latitude and longitude) information.

9.1 Intensity versus Intensity & Probability

The main goal is to use the proposed methodology to analyze the
impact of selecting hotspots based only on crime intensity versus
select them from the Probability vs. Intensity scatter plot.

Fig. 8 shows the Hotspot Scatter View (top-left graphic) where
red dots are anchor points selected as hotspots in both the Intensity
only and Intensity & Probability. The blue dots correspond to
anchor points considered in the Intensity & Probability only, while
the green dots are anchor points considered in the Intensity only
group. The gray dots are not considered hotspots. The Within-
Group Joy Charts (top-right) shows crime patterns from the blue
and green set of hotspots. The Location View (bottom map) shows
the geolocation of the blue and green hotspots in a specific region
of the city.

Notice that the set of green hotspots left out in the Probability
x Intensity selection correspond to crimes that take place in a short
period, while the blue hotspots present patterns of crimes spread
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Fig. 8. Analysis of hotspot identification technique. Comparison between
missed hotspots with different cut variables. (top-left) Hotspot Scatter
View: red dots are hotspots identified by Intensity and Mixed definitions;
blue dots are hotspots identified just by Mixed definition; and green dots
are points identified only by Intensity Definition. (top-right) Time series of
blue and green dots. (bottom) Location View with plotted points.

out over the whole period. An interesting aspect pointed out in the
Location View (Fig. 8-bottom) is that the green (probable) hotspots
tend to show up along main streets, avenues, and highways (dashed
lines). In contrast, the blue (intense) hotspots are more spread, also
appearing in secondary streets. Domain experts considered this
an exciting finding because it shows that crime patterns seem to
change according to urban infrastructure in a way they have not
observed before. The possibility of identifying those patterns can
make public security policies more efficient.

CriPAV enables the selection of both types of hotspots, and
more importantly, it can show the importance of using the
probability to characterize hotspots. Therefore, the case study
shows that the proposed methodology can found robust hotspots
based not only on the Intensity but also on the Probability (T1)
while showing the geographical localization of the hotspots (T2).
Finally, it is possible to analyze different crime patterns (T5) and
their relation with urban characteristics.

9.2 Understanding Crime Patterns and Socioeconomic
Factors
The main goal is this case study is to analyze spatial and
temporal crime patterns over the city, relating the patterns with the
socioeconomic characteristics of each location.

Specifically, domain experts aimed to address the following
questions: (i) how are hotspots concentrated for each crime type?
(ii) how are crime patterns spatially distributed?, and (iii) how
socioeconomic factors relate to crime hotspots? Domain experts

(a) First row: Location View of hotspots distribution of each crime type
and number of census units involved. Second row: the relation between
hotspots and socioeconomic variables for each crime type.

(b) Relation between Between-Group Chart temporal patterns and
socioeconomic variables.

Fig. 9. Comparison of Passerby, Commercial Establishment, and Vehicle
robberies patterns over the city. (a-first row) Concentration and dispersion
tendency of hotspots; (a-second row) Relation between hotspots and
socioeconomic variables, and (b) Spatial behavior of hotspots clusters
and socioeconomic variables.

provided socioeconomic indicators that account for population,
housing, mobility, and urban expansion in census unit of São Paulo,
labeling those units according to eight categories ranging from
A (better socioeconomic level) to H (worst level). We selected a
region of study with 5,890 census units spread around downtown
São Paulo. First, the location view was used to visualize the
concentration of hotspots. Fig. 9(a) shows the hotspot distribution
for each crime type. The colored background corresponds to
census units of level A (red) and B (orange). Notice that there
are three prominent patterns in terms of hotspot distribution.
Passerby robbery are concentrated in the center of the city,
Commercial Establishment robbery is spread throughout the city,
while Vehicle robbery hotspots are concentrated in the periphery.
The socioeconomic indicators are also related to crime types. The
bottom legend in Fig. 9(a) shows the percentage of hotspots in each
social class. We can see that passerby robbery is more prevalent in
class A, commercial establishment robbery is equally distributed,
and vehicle robbery takes place mostly in class B. Moreover,
passerby, commercial establishment, and vehicle robberies hotspots
are concentrated in only a small portion of the census unit, 535
(9%), 305 (5%), and 591 (10%), respectively.

The relation between socioeconomic factors and crime types is
even more pronounced when we consider temporal behavior. Dur-
ing the exploration of the three crime types using CriPAV, domain
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Fig. 10. Hotspots infrastructure comparisons over time. (1) Clusterization and projection of hotspots using Hotspot2Vec, (2) Between-Group Chart
showing temporal behavior of each group, (3) time series of the selected group of hotspots (Group 0 and Group 2), and (4) temporal images of points
P1, P2, and P3.

experts perceived four prominent temporal patterns. Relying on
Between-Group Chart, it is possible the notice the patterns depicted
in Fig. 9(b) left, where the leading four patterns are clearly seen,
namely: high crime rates in the past, high crime rates in the recent
past, recent high crime rates, and crime events spread over the
whole time interval. Socioeconomic factors seem not to affect
passerby robbery over time. It might happen because this type of
crime is positively related to people’s flow; it does not matter if in
class A or B. In contrast, commercial establishment and vehicle
robberies present a change over the years, migrating from class
A to class B, making class B neighborhoods more vulnerable to
those two types of crimes in more recent years. The reason for that
shift is an interesting aspect to be further investigated, calling the
expert’s attention to a phenomenon they have never noticed before.

The discussion above shows that the hotspot detection and
grouping functionalities implemented in CriPAV are able to sort out
the three analytic questions raised by domain experts. In particular,
Location View and Between-Group Chart turn out to be effective in
showing the spatial distribution of the hotspots (T2) and the relation
between hotspots and the characteristic of their surroundings (T4).

9.3 Relating Urban Infrastructure and Crime Patterns
This case study assesses the effectiveness of CriPAV in assisting
experts in analyzing the relation between crime patterns and
urban infrastructure. Such an analysis demands a street-level
spatial representation of crime events (T2), a mechanism to
investigate physical urban constructions in specific locations (T3),
and comparing different hotspots groups (T6).

To start the analysis, we used Hotspot Scatter View to select
3 percent of the most important hotspots considering probability
and intensity. Fig. 10(1) shows the groups and projection of the
selected hotspots. The color encodes the different groups, and the
legend on the left represents the number of elements in each group.

The Between-Group Chart (Fig. 10(2)) presents a visualization
of the groups and their summary pattern. To perform a detailed
analysis, we selected three hotspots denoted as P1, P2, and P3 on

the map, as depicted on the left bottom of Fig. 10. P1 is located in
the north São Paulo, in an industrial area of the city. P2 is located
in the east part of the city, and it is surrounded by recreational
places such as sports clubs and Samba schools. P3 is located in
a district with high-quality infrastructures in terms of transport,
health, culture, and education. It is surrounded by metro stations,
a university, and a bus terminal. P1 and P2 belong to the orange
group highlighted in Fig. 10(1) top while P3 comes from the blue
group on the bottom of Fig. 10(1). Fig. 10(3) shows the average
time series of the orange (top) and blue (bottom) groups. These
time series were extracted using the Between-Group Chart. Notice
that the time series from the orange group presents relatively high
criminality rates in the early years of the time interval, facing a
quick drop in 2011. On the other hand, the blue group’s time series
shows that the hotspots belonging to that group do not have relevant
crime activity until 2013, presenting relatively high crime rates
since then.

To raise the hypothesis as to why such patterns happen in
those locations, we used Physical View to inspect images of the
urban infrastructure around those hotspots. Fig. 10(4-a) shows
some pictures of the urban infrastructure around P1 over the years.
Notice that until 2011 there was a store with a poorly preserved
facade, graffiti, trash bags, and broken windows. In 2011, the store
was replaced by a bank branch, improving cleanliness and possibly
the security in this location. The change might have triggered
the radical drop in criminality in P1. Regarding P2 (second row
of Fig. 10(4-a)), a bridge was under construction before 2011.
Once done, the bridge certainly changed people’s flow in that
neighborhood, impacting the criminality rate. Performing the same
analysis for P3, we observe a different behavior. There was no
crime activity in P3 for several years, and after 2013, crime rates
increased substantially. Using the Physical View, we extract images
of the surroundings of P3 over the years. P3 is in front of a bus
terminal. The images in Fig. 10(4-b) show that before 2013 the bus
terminal was under construction, as shown in the first two photos.
The bus terminal was inaugurated in 2013, which coincides with
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the beginning of rising crime rates in that location. In contrast to
P1 and P2, the urban infrastructure might have triggered the crime
in that location.

This case study shows that urban infrastructure can certainly
impact crime dynamics, thus dictating crimes’ emergence and
disappearance in particular locations.

10 EVALUATION FROM EXPERTS
We designed an expert evaluation in which each expert performed
some tasks using the CriPAV system. After using our methodology
and performing experiments, we collected experts’ opinions about
the method, functionalities, and visual components. In this section,
we describe the details of the evaluation and the obtained results.

10.1 Participants
We selected four domain experts from the Center of Study of
Violence of São Paulo University (NEV-USP). One of them directly
involved in the tool’s design; the other three had no participation
in the development. The experience of the experts in crime data
analysis and the usage of computational tools ranged from 5 to 20
years, being a technology chair, a physical geographer, a sociologist,
and a politics researcher. All participants completed three stages
in our study: an introduction to CriPAV, a presentations of some
applications (case studies), and the accomplishment of some tasks.

10.2 The Evaluation Process
Before setting the tasks, we presented the methodology (including
the case studies), the tool, and its visual components to experts.
This presentation built confidence and aimed to bring participants
to a similar level of knowledge about the instrument, as they are
scientists of different areas and domains.

After that, using the second case study as a starting point, we
designed tasks that induced the experts to use most of the visual
resources available in CriPAV.

Task 1: Participants were asked to extract two hotspots for
any crime type and their corresponding photos in the first task.
The experts had to select two interesting corners based on their
experience and knowledge of the city.

Task 2: In the second task, participants were asked to analyze
hotspot’s temporal patterns seeking explanations for the temporal
crime behavior. This task is subjective because each expert could
find different reasons based on their expertise.

Although Tasks 1 and 2 are similar, Task 2 demands a more
intensive use of the visual resources. The system was re-started
after each task to push further the users to interact with the system.
Moreover, in task 2, we asked the expert to explore temporal
patterns with different behavior (high crime rates in the past, high
crime rates in the recent past, current high crime rates, and crime
events spread over the whole time interval).

After the presentation and performing the tasks, participants
commented about the methodology, case studies, and CriPAV
system. They answered qualitative (QL) and quantitative questions
(QT).

The qualitative questions are: “What is your impression about
the proposed hotspot detection technique?” (QL1); “What do you
highlight as interesting in case study 2 (QL2) and 3” (QL3)?;

“If you have already accomplished similar analysis to the ones
performed in the case studies, which tool/methodology have you
used?”(QL4); “Which are the challenges when performing analysis

Fig. 11. Summary of quantitative questions.

similar to the ones presented in the case studies?”(QL5); “Do you
consider CriPAV a useful tool, why?”(QL6); “In your opinion,
which are the most helpful visual components?” (QL7); “Besides
the existing visual resources, which other components do you think
would be useful to incorporate in CriPAV?” (QL8); “Which are
the advantage of CriPAV when compared to other tools you are
used to?”(QL9); “Which are the disadvantages?” (QL10); “Please,
provide your final comments” (QL11).

The quantitative questions are: “Do you consider case studies
2 (QT1) and 3 (QT2) relevant? (Yes, Partially, No)”; “Have you
tried to do analysis similar to the ones described in the case studies
before? (Yes, No)” (QT3); “Are you currently able to do those
analyses with another tool? (Yes, No)” (QT4); “Have you got
new knowledge or conclusions from your exploration? (Yes, No)”
(QT5); “Do you consider CriPAV a useful tool for crime analysis?
(Yes, Partially, No)” (QT6).

Sec. 10.3 presents the qualitative answers grouped in different
topics. Fig. 11 depicts a summary of the quantitative answers,
summarized as i) the experts considered attractive the case studies
2 and 3 (QT1 and QT2); ii) half of them tried to do a similar analysis
before (QT3), iii) only one expert could accomplish analysis similar
to the case studies with another tool (see details in the “Usefulness”
paragraph in the following subsection), and iv) all of them have got
new knowledge by playing with CriPAV (QT5). Moreover, most
of the experts considered CriPAV a helpful tool for crime analysis
(QT6).

10.3 Results

We collected the experts’ opinions about our hotspot detection
technique, usefulness, and usability of our system, described in the
following.

Methodology (QL1 and QL11): The probability vs. intensity
method for hotspot detection was deemed relevant for the users,
being considered strong, promising, and creative. One of the experts
commented: “Using robust mathematical and computational mech-
anisms helps to identify crime hotspot not only by the most likely
dangerous locations but also places that might not receive enough
attention from public safety policies, despite frequent criminal
activities”. Regarding the time series clustering mechanism, one
of the experts commented: “Identifying similar temporal behavior
of hotspots located in different locations leads to thinking about
the city’s complexity. At the same time, it guides the investigation
of plausible explanations (demographic profile and urban pattern)
for violence dynamics, which would be difficult with conventional
tools”. Moreover, “The identification of specific places with similar
criminal behavior is important to apply similar public policies...”.

Case studies (QL2 and QL3): We collected the experts’ impres-
sions on Case Study 2 and 3 to validate our analysis. Case Study 2
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took longer to be understood by the experts, but they appreciated
the way hotspots are defined and the pattern distribution stratified
by socioeconomic variables. “The match of crime events, temporal
behavior, and socioeconomic variables helps a lot understand the
complexity of crimes. I emphasize the importance of detecting
spatio-temporal patterns and presenting different approaches and
explanations for the dynamics of crime records”. On the other
hand, experts were delighted with Case Study 3. Their explanations
were in line with our analysis. “This study is so valid; identifying
patterns and the possibility of visualizing the place and the changes
over time presents itself as a tool that dramatically increases the
agility of the analysis and, I believe, the planning of actions from
public agencies”.

Usefulness (QL4, QL5, and QL9): Domain experts considered the
CriPAV a helpful tool for crime analysis, mainly when compared
against other tools: “A similar analysis would demand the use
of several GIS-based tools (Terraview, SPRING, Mapinfo, QGIS,
etc.) with specific functionalities to assist users in a particular
analysis.” The mentioned GIS-based alternatives are general-
purpose tools that can be used for crime analysis. The generality
of those tools brings advantages and also weaknesses. For instance,
Terraview [18] has excellent flexibility to organize information
in data sets, and it has the capability of assessing geocoding
quality. However, it does not allow a direct street-level analysis
of the data, demanding users to implement (or acquire) routines
for this purpose. SPRING [17] can handle numerical and thematic
geo-fields (geo-objects) through the so-called LEGAL (Spatial
Language for Algebraic Geoprocessing) map algebra, introducing
flexibility to take multiple data sources. However, learning map
algebra is not so straightforward, requiring some training from the
users. Mapinfo [64] is quite helpful to handle vector maps and
alphanumeric data, but, similarly to Terraview, street-level analysis
can only be performed through dedicated packages. QGIS [65]
is free software that allows users to view and overlay vector and
raster data, being more versatile than ArcGIS [31]. However, QGIS
also demands training to be used properly. In fact, some experts
reported that QGIS can become confusing for non-experinced users,
hampering the analytical process.

In contrast to the general-purpose GIS tools, CriPAV has been
designed for the specific task of crime analysis in a street-level
of detail. Therefore, CriPAV does not demand several hours of
training to be used, enabling an intuitive mechanism to assist users
in understanding spatio-temporal crime patterns.

Usability (QL6 and QL9): The domain expert involved in the
design of CriPAV acknowledged that the system does integrate all
the aspects discussed in our meetings. “The tool is very dynamic
and easy to use, capable of presenting very clearly the time
series, corresponding photos, and other additional information.
For urban administrators and security officers, it offers meaningful
information on territorial occupation and crime occurrences”.

Familiarity vs. Preference (QL7): Regarding familiarity with the
resources available in CriPAV, we observed that most experts were
already used to some visual tools such as Hotspot Scatter View,
Location View, and Within-Group Joy Chart. However, although
they were not familiar with the Between-Group Chart, most of
them preferred this visual resource to select hotspots due to the
facility identifying patterns.

Scope for future Research (QL8 and QL10): We also investigate
resources the experts deem relevant during the user study but are not
available in CriPAV yet. We identified that the main requirements

are related to additional information to analyze the hotspots, such
as the flow of people and information related to violent crimes.
It is worth mentioning that CriPAV can naturally incorporate that
information once we have access to it.

This multidisciplinary work ended successfully, creating new
research fronts in crime analysis. One of the experts commented:

“The results demonstrate the importance of analyzing crime patterns
at small scales and have important implications for theoretical
development and empirical research”.

11 DISCUSSION AND LIMITATIONS

As detailed in Sec. 3.3, CriPAV was designed to meet the experts’
demands. However, there are some limitations and future work that
will be addressed in follow-up work.

Automatic crime perception on photos. The Physical View relies
on google street view to build a temporal photo collage in the
surroundings of a particular corner. However, the relation between
physical characteristics and crime activity is performed manually.
This analysis can be time-consuming and tedious, mainly when
many images are available. A solution for this problem is to build
upon Image Emotion Recognition [8] to automatically detect parts
of the image related to danger, helping users to quickly focus on
those images.

Spatial Discretization. We used the network generated by the
Python library osmnx as a spatial representation. However, there
are other representations, some of which with a more refined
level of detail. Enabling the tool to switch between street network
representations is essential, and we will address this issue in the
future.

Multiple Data Sources and Scenarios. Combine different data
sources would be helpful to analyze the whole crime story in
each location. CriPAV enables information about infrastructure
and socioeconomic variables, but given the increasing number of
initiatives to make urban data publicly available, incorporating
other sources of information would considerably enrich CriPAV’s
analytic power. Among the information that could be handled are
the number of bars and bus stops near each anchor point, which
correlate with certain types of crimes. Moreover, although domain
experts are primarily interested in analyzing only three crime types,
we could extend the number of crime types. CriPAV is scalable to
handle many crime types and a large number of crime instances.
The user can choose the type of crime from a list in the main menu.
We believe that the additional level of information will open new
avenues for interpreting crime patterns.

12 CONCLUSION

In this work, we proposed a visualization-assisted methodology
for crime analytic. The proposed tool brings two main technical
contributions: a mechanism based on a stochastic matrix to identify
hotspots based not only on the intensity but also on the probability
of crime events and a technique to find similar hotspots embedding
the time series in a cartesian space (Hotspot2Vec). Our system,
called CriPAV, turned out to be effective to assist experts to figure
out the relation between crime patterns and urban characteristics,
revealing phenomena and patterns that were previously unknown
by experts in crime analysis.
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