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Abstract

Explaining node predictions in graph neural
networks (GNNs) often boils down to finding
graph substructures that preserve predictions.
Finding these structures usually implies back-
propagating through the GNN, bonding the com-
plexity (e.g., number of layers) of the GNN to
the cost of explaining it. This naturally begs the
question: Can we break this bond by explaining
a simpler surrogate GNN? To answer the ques-
tion, we propose Distill n’ Explain (DnX). First,
DnX learns a surrogate GNN via knowledge dis-
tillation. Then, DnX extracts node or edge-level
explanations by solving a simple convex pro-
gram. We also propose FastDnX, a faster version
of DnX that leverages the linear decomposition
of our surrogate model. Experiments show that
DnX and FastDnX often outperform state-of-the-
art GNN explainers while being orders of magni-
tude faster. Additionally, we support our empir-
ical findings with theoretical results linking the
quality of the surrogate model (i.e., distillation
error) to the faithfulness of explanations.

1 Introduction

Graph neural networks (GNNs) (Gori et al., 2005; Scarselli
et al., 2009) have become the pillars of representation
learning on graphs. Typical GNNs resort to message pass-
ing on input graphs to extract meaningful node/graph rep-
resentations for the task at hand. Despite the success of
GNNs in many domains (Stokes et al., 2020; Gilmer et al.,
2017; Ying et al., 2018; Sanchez-Gonzalez et al., 2020),
their architectural design often results in models with lim-
ited interpretability. This naturally makes it hard to diag-
nose scenarios in which GNNs are fooled by confounding
effects or align poorly with expert knowledge.
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To mitigate this lack of interpretability, a popular strategy is
to use post-hoc explanation methods (Ribeiro et al., 2016;
Lundberg and Lee, 2017; Slack et al., 2021; Han et al.,
2022; Huang et al., 2022). The idea is to increase model
transparency by highlighting input/model elements that are
particularly important for predictions, helping users to un-
derstand what is happening under the hood.

There has been a recent outbreak of methods for explain-
ing GNNs (Yuan et al., 2022). Although GNN explana-
tions can come in different flavors (Ying et al., 2019; Yuan
et al., 2021; Wang et al., 2021; Lucic et al., 2022; Yuan
et al., 2020), they usually take the form of (minimal) sub-
structures of input graphs that are highly influential to the
prediction we want to explain. The seminal work of Ying
et al. (2019, GNNExplainer) proposes learning a soft mask
to weigh graph edges. To find meaningful masks, GN-
NExplainer maximizes the mutual information between the
GNN predictions given the original graph and the masked
one. To alleviate the burden of optimizing again whenever
we want to explain a different node, Luo et al. (2020, PG-
Explainer) propose using node embeddings to parameter-
ize the masks, i.e., amortizing the inference. Nonetheless,
GNNExplainer and PGExplainer impose strong assump-
tions on our access to the GNN we are trying to explain.
The former assumes we are able to back-propagate through
the GNN. The latter further assumes that we can access
hidden activations of the GNN. Vu and Thai (2020, PG-
MExplainer) relieve these assumptions by approximating
the local behavior of the GNN with a probabilistic graphi-
cal model (PGM) over components, which can be used to
rank the relevance of nodes and edges. On the other hand,
getting explanations from PGMExplainer involves learning
the structure of a PGM, and may not scale well.

In this work, we adopt the same black-box setting of Vu
and Thai (2020) but severely cut down on computational
cost by extracting explanations from a global surrogate
model. In particular, we propose Distill n’ Explain (DnX).
DnX uses knowledge distillation to learn a simple GNN Ψ,
e.g. simple graph convolution (Wu et al., 2019, SGC), that
mimics the behavior of the GNN Φ we want to explain.
Then, it solves a simple convex program to find a mask that
weighs the influence of each node in the output of Ψ. We
also propose FastDnX, a variant of DnX that leverages the



linear nature of our surrogate to speed up the explanation
procedure. Notably, we only require evaluations of Φ to
learn the surrogate Ψ and, after Ψ is fixed, we can use it to
explain any node-level prediction. To back up the intuition
that explaining a surrogate instead of the original GNN is
a sensible idea, we provide a theoretical result linking the
distillation quality to the faithfulness of our explanations.

Experiments on eight popular node classification bench-
marks show that DnX and FastDnX often outperform
GNN-, PG-, and PGM-Explainers. We also demonstrate
that both DnX and FastDnX are much faster than the com-
petitors. Remarkably, FastDnX presents a speedup of up to
65K× over GNNExplainer. Finally, we discuss the limita-
tions of current benchmarks and show that explainers capa-
ble of leveraging simple inductive biases can ace them.

Our contributions are three-fold:

1. we propose a new framework for GNN explanations
that treats GNNs as black-box functions and hinges on
explaining a simple surrogate model obtained through
knowledge distillation;

2. we provide theoretical bounds on the quality of ex-
planations based on these surrogates, linking the error
in the distillation procedure to the faithfulness of the
explanation;

3. we carry out extensive experiments, showing that our
methods outperform the prior art while running orders
of magnitude faster.

2 Background

Notation. We define a graph G = (V,E), with a set of
nodes V = {1, . . . , n} and a set of edges E ⊆ V × V .
We denote the adjacency matrix of G by A ∈ Rn×n, i.e.,
Aij is one if (i, j) ∈ E and zero otherwise. Let D be the
diagonal degree matrix of G, i.e., Dii =

∑
j Aij . We also

define the normalized adjacency matrix with added self-
loops as Ã = (D+ In)

−1/2(A+ In)(D+ In)
−1/2, where

In is the n-dimensional identity matrix. Furthermore, let
X ∈ Rn×d be a matrix of d-dimensional node features.
Throughout this work, we often represent a graph G using
the pair (A,X).

Graph neural networks (GNNs). We consider the gen-
eral framework of message-passing GNNs (Gilmer et al.,
2017). Typical GNNs interleave aggregation and update
steps at each layer. Specifically, for each node v at layer ℓ,
the aggregation is a nonlinear function of the (ℓ − 1)-layer
representations of v’s neighbors. The update step computes
a new representation for v based on its representation at
layer ℓ− 1 and the aggregated messages (output of the ag-
gregation step). Here we cover two specific GNN archi-
tectures: graph convolutional networks (Kipf and Welling,

2017, GCNs) and simplified graph convolutions (Wu et al.,
2019, SGC). The former is arguably the most popular GNN
in the literature and is used profusely throughout our exper-
iments. The latter is a linear graph model, which will be
an asset to our explanation method. For a more thorough
overview of GNNs, we refer the reader to Hamilton (2020).

Graph convolutional networks combine local filtering op-
erations (i.e., graph convolutions) and non-linear activation
functions (most commonly ReLU) at each layer. Denoting
the weights of the ℓ-th GCN layer by W (ℓ) and the element-
wise activation function by σ, we can recursively write the
output of the ℓ-th layer H(ℓ) as:

H(ℓ) = σ
(
ÃH(ℓ−1)W (ℓ)

)
, (1)

where H(0) = X . To obtain node-level predictions,
we propagate the final embeddings — after an arbi-
trary number of layers — through a modified convolu-
tion with a row-wise softmax instead of σ, i.e., Ŷ =
softmax(ÃH(ℓ)W (ℓ+1)). In practice, it is also common to
apply multilayer perceptron on top of the final embeddings.

SGC can be viewed as a simplification of the GCN model.
Wu et al. (2019) derive SGC by removing the nonlinear
activation functions in GCNs. Consequently, the chained
linear transformations become redundant and we can use a
single parameter matrix Θ. Thus, node predictions from an
L-layer SGC are:

Ŷ = softmax(ÃLXΘ). (2)

Interestingly, Wu et al. (2019) showed that SGC often per-
forms similarly to or better than GCN in a variety of node
classification tasks. On top of that, training SGCs is com-
putationally more efficient than training GCNs, and SGC
has significantly fewer parameters.

3 DnX: Distill n’ Explain

We now introduce DnX — a new post-hoc explanation
method for GNNs. DnX comprises two steps: knowledge
distillation and explanation extraction. During the former,
we use a linear GNN Ψ to approximate the predictions from
the GNN Φ we want to explain. In the second step, we ex-
tract explanations directly from Ψ (instead of Φ). We hy-
pothesize that, as long as Ψ is a good approximation of Φ,
substructures highly influential to the output of Φ should
also be relevant to Ψ. Therefore, explanations of our surro-
gate should also explain well the original GNN. To obtain
explanations, we exploit the linear nature of Ψ and propose
two simple procedures. The first consists of solving a con-
vex program. The second ranks nodes based on a simple
decomposition of predictions into additive terms.

Following Vu and Thai (2020), we assume Φ is a black-
box model that we can only probe to get outputs. More



specifically, we cannot access gradients of Φ, nor can we
access inner layers to extract node embeddings.

3.1 Knowledge distillation

We use SGC (Wu et al., 2019) to approximate the predic-
tions obtained with the GNN Φ. Formally, the surrogate
model (SGC) Ψ receives the input graph G = (A,X) and
provides class predictions Ŷ (ΨΘ) = softmax(ÃLXΘ),
where Θ is the matrix of model parameters, and L is a
hyper-parameter.

The distillation process consists of adjusting the parameters
of ΨΘ to match its predictions to those of the network Φ.
We do so by minimizing the Kullback-Leibler divergence
KL between the predictions of Φ and ΨΘ. Let Ŷ (ΨΘ)

i and
Ŷ

(Φ)
i denote the class predictions for node i from the ΨΘ

and Φ models, respectively. We distill Φ into Ψ by solving:

min
Θ

{
KL
(
Ŷ (Φ), Ŷ (ΨΘ)

)
:=
∑
i∈V

∑
c

Ŷ
(Φ)
ic log

Ŷ
(Φ)
ic

Ŷ
(ΨΘ)
ic

}
,

(3)
which is equivalent to the categorical cross-entropy be-
tween Ŷ (Φ) and Ŷ (ΨΘ). Note that minimizing this loss does
not require back-propagating through the original GNN Φ,
only through the surrogate Ψ. We also do not require any
knowledge about Φ’s architecture.

3.2 Explanation extraction

To obtain an explanation to a given prediction Ŷ
(Ψθ)
i , we

want to identify a subgraph of G containing the nodes that
influence the most that prediction. We denote an expla-
nation E as an n-dimensional vector of importance scores
(higher equals more relevant), one for each node in the ver-
tex set V . We introduce two strategies to compute E .

Optimizing for E . We can formulate the problem of find-
ing the explanation E by treating it as a vector of 0-1
weights, and minimizing the squared L2 norm between the
logits associated with Ŷ

(ΨΘ)
i and those from the graph with

node features masked by E :

min
E∈{0,1}n

∥ ÃL
i diag(E)XΘ− ÃL

i XΘ ∥22, (4)

where ÃL
i denotes the i-th row of the matrix ÃL. Note

that the formulation in Equation 4 has a major issue: it
admits the trivial solution E = [1, 1, . . . , 1]. To circumvent
the issue and simultaneously avoid binary optimization, we
replace the search space {0, 1}n by the (n − 1)-simplex
∆ = {r ∈ Rn :

∑
i ri = 1,∀iri ≥ 0}. Implementing this

change and re-arranging computations, we wind up with:

min
E∈∆

∥∥∥ÃL
i (diag(E)− In)XΘ

∥∥∥2
2
. (5)

Note that nodes outside the L-hop neighborhood of node
i do not affect how Ψ classifies it. Thus, we can mask all
nodes at distance ≥ L + 1 without altering the solution of
Equation 5. For ease of implementation, we solve Equa-
tion 5 reparameterizing E as a softmax-transformed vector.

Finding E via linear decomposition. Let Zi denote the
logit vector associated with the prediction Ŷ

(ΨΘ)
i . Due to

the linear nature of Ψ, we can decompose Zi into a sum of
n terms, one for each node in V (plus the bias):

ÃL
i1X1Θ+ ÃL

i2X2Θ+ . . .+ ÃL
inXnΘ+ b = Zi. (6)

Therefore, we can measure the contribution of each node
to the prediction as its scalar projection onto Zi − b:

Ej := ÃL
ijXjΘ(Zi − b)⊺ (7)

When we use this strategy instead of solving Equation 5,
we refer to our method as FastDnX.

4 Analysis

In this section, we discuss the theoretical and computa-
tional aspects of our method. We first provide theoretical
results supporting the hypothesis that good explanations of
a global surrogate Ψ also characterize good explanations
of Φ — in terms of faithfulness. Then, we discuss the con-
vexity of the optimization problem DnX solves to extract
explanations. We delegate proofs to the Appendix A.

Let Gu denote the subgraph of G induced by the L-hop
neighborhood around node u. We say an explanation Eu
for a node u is faithful with respect to Φ if: i) Φ outputs
approximately the same predictions for u regardless of us-
ing Eu to weigh the nodes of Gu or not; and ii) the same
holds under small perturbations of Gu. We can define a
perturbation G′

u of Gu by adding noise to u’s features or by
randomly rewiring node u’s incident edges (Agarwal et al.,
2022). In this work, we consider perturbations over node
features. More precisely, this entails that V (G′

u) = V (Gu),
E(G′

u) = E(Gu), and that features are corrupted by noise,
i.e., X ′

i = Xi + ϵi for i ∈ V (Gu) and ϵi ∈ Rd.

Definition 1 (Faithfulness). Given a set K of perturbations
of Gu, an explanation Eu is faithful to a model f if

1

|K|+ 1

∑
G′
u∈K∪{Gu}

∥f(G′
u)− f(t(G′

u, Eu))∥2 ≤ δ,

where G′
u is a possibly perturbed version of Gu, t is a func-

tion that applies the explanation Eu to the graph G′
u, and δ

is a small constant (Agarwal et al., 2022).

Lemma 1 provides an upper bound on the unfaithfulness
of Eu with respect to the surrogate model Ψ. Theorem 1
extends this result to obtain a bound for Eu with respect to
the model we originally want to explain, i.e., Φ.



Lemma 1 (Unfaithfulness with respect to Ψ). Given a
node u and a set K of perturbations, the unfaithfulness of
the explanation Eu with respect to the prediction Y

(ΨΘ)
u of

node u is bounded as follows:

1

|K|+ 1

∑
G′
u∈

K∪{Gu}

∥Ψ(G′
u)−Ψ(t(G′

u, Eu))∥2 ≤ γ

∥∥∥∥∆Eu

ÃL
u

∥∥∥∥
2

,

where G′
u is a possibly perturbed version of Gu, t is a func-

tion that applies the explanation Eu to the graph G′
u, γ is

a constant that depends on the model weights Θ, node fea-
tures X , and perturbation ϵ. Furthermore, ∆

Eu

ÃL
u is the u-th

row of the difference of the powered, normalized adjacency
matrix ÃL before and after applying the explanation Eu.

Sketch of the proof. We first show that

∥Ψ(Gu)−Ψ(t(Gu, Eu))∥2 ≤ ∥(XΘ)⊺∥2
∥∥∥ÃL

u − ẼL
u

∥∥∥
2

by using Lipschitz continuity of the softmax function and
the compatibility property of the L2 matrix norm. We re-
peat for G′

u ∈ K, take the mean in K ∪ {Gu} and isolate∥∥∥∥∆Eu

ÃL
u

∥∥∥∥
2

=
∥∥∥ÃL

u − ẼL
u

∥∥∥
2
. The complete proof is avail-

able in Appendix A.

Theorem 1 (Unfaithfulness with respect to Φ). Under the
same assumptions of Lemma 1 and assuming the L2 distil-
lation error is bounded by α, the unfaithfulness of the ex-
planation Eu for the original model Φ’s node u prediction
is bounded as follows:

1

|K|+ 1

∑
G′
u∈

K∪{Gu}

∥Φ(G′
u)− Φ(t(G′

u, Eu))∥2 ≤ γ

∥∥∥∥∆Eu

ÃL
u

∥∥∥∥
2

+ 2α.

Note that Theorem 1 establishes a bound on faithfulness
that depends directly on the distillation error α. Impor-
tantly, when Ψ is a perfect approximation of Φ, we retrieve
upper-bound on the RHS of Lemma 1.

We note that Theorem 1 by Agarwal et al. (2022) covers
an upper bound for the unfaithfulness of GNN explanation
methods. However, they do not cover the case in which the
explanation is a (weighted) subset of nodes in the L-hop
neighborhood of u, as in our method.

For completeness, we also extend Lemma 1 and Theorem 1
to account for the (very often) probabilistic nature of the
noise, i.e., for the case in which ϵi are random variables.

Lemma 2 (Probability bound on unfaithfulness w.r.t. Ψ).
Given a node u and a set K of perturbations and as-
suming the perturbations are i.i.d. with distribution
ϵi ∼ N (0, σ2), the unfaithfulness of the explanation Eu

with respect to the prediction Y
(ΨΘ)
u of node u is bounded

in probability as follows:

P

 1

|K|+ 1

∑
G′
u∈

K∪{Gu}

∥Ψ(G′
u)−Ψ(t(G′

u, Eu))∥2 ≤ ξ

 ≥

≥ Fχ2
|K|nd

ξ − γ1

∥∥∥∥∆Eu

ÃL
u

∥∥∥∥
2

γ2

∥∥∥∥∆Eu

ÃL
u

∥∥∥∥
2

σ

− |K|


where γ1 is a constant that depends on the model weights Θ
and node features X , γ2 is a constant that depends on the
model weights Θ, and Fχ2

|K|nd
is the c.d.f. of a chi-square

r.v. with |K| × n × d degrees of freedom where (n, d) are
the row- and column-wise dimensions of X .

Theorem 2 (Probability bound on unfaithfulness w.r.t. Φ).
Under the same assumptions of Lemma 2 and assuming the
L2 distillation error is bounded by α, the unfaithfulness
of the explanation Eu for the original model Φ’s node u
prediction is bounded in probability as follows:

P

 1

|K|+ 1

∑
G′
u∈

K∪{Gu}

∥Φ(G′
u)− Φ(t(G′

u, Eu))∥2 ≤ ξ

 ≥

≥ Fχ2
|K|nd

ξ − γ1

∥∥∥∥∆Eu

ÃL
u

∥∥∥∥
2

− 2α

γ2

∥∥∥∥∆Eu

ÃL
u

∥∥∥∥
2

σ

− |K|



In Lemma 2 and Theorem 2, when the variance σ2 ap-
proaches zero, ξ relinquishes its random nature and the
probability in the RHS converges to one. We note that nu-
merators in the RHS must be non-negative.

Recall DnX/FastDnX’s pipeline involves two steps: model
distillation (Equation 3) and explanation extraction (Equa-
tion 5). The former is done only once to learn the surrogate
Ψ. The latter, however, must be executed for each node
whose prediction we want to explain. Then, gauging the
cost of the extraction step may become a genuine concern
from a practical point of view, especially for DnX, which
implies solving an optimization problem repeatedly. For-
tunately, the loss landscape of our extraction problem de-
pends only on the shape of Ψ, and not on the original GNN
Φ as in GNNExplainer. Since Ψ is an SGC, Equation 5 is a
convex program (Theorem 3) and we reach global optima
using, e.g., gradient-based algorithms.

Theorem 3 (Convexity of DnX). The optimization prob-
lem of Equation 5 is convex.



5 Additional related works

Explanations for GNNs. The ever-increasing applica-
tion of GNNs to support high-stake decisions on critical
domains (Stokes et al., 2020; Jiménez-Luna et al., 2020;
Derrow-Pinion et al., 2021) has recently boosted interest
in explainability methods for graph models. Pope et al.
(2019) first extended classical gradient-based explanation
methods for GNNs. Importantly, Ying et al. (2019) intro-
duced GNNExplainer and synthetic benchmarks that have
been widely adopted to assess GNN explainers. Building
on parameterized explainers by Luo et al. (2020), Wang
et al. (2021) proposed ReFine to leverage both global infor-
mation (e.g., class-wise knowledge) via pre-training and lo-
cal one (i.e., instance specific patterns) using a fine-tuning
process. Lucic et al. (2022); Bajaj et al. (2021) investigated
counterfactual explanations for GNNs, aiming to find min-
imal perturbations to the input graph such that the predic-
tion changes, e.g., using edge deletions. Feng et al. (2021)
proposed measuring the contribution of different compo-
nents of the input graph to the GNN prediction by decom-
posing the information generation and aggregation mecha-
nism of GNNs. Recently, Zhang et al. (2022b) introduced a
structure-aware scoring function derived from cooperative
game theory to determine node importance. Explainabil-
ity methods for GNNs have also been approached through
the lens of causal inference (Lin et al., 2021, 2022). For
a more comprehensive coverage of the literature, we refer
the reader to Yuan et al. (2022).

Knowledge distillation. Since the pivotal work of Hin-
ton et al. (2015), condensing the knowledge from a pos-
sibly complex teacher model into a simpler student surro-
gate has been an active research topic (e.g. Vadera et al.,
2020; Malinin et al., 2020; Ryabinin et al., 2021; Zhou
et al., 2022; Hen et al., 2021). Nonetheless, despite nu-
merous works using distillation in image domains (e.g. Re-
buffi et al., 2017; Douillard et al., 2021; Baek et al., 2022),
the distillation of GNNs is still a blooming direction. Yang
et al. (2020) proposed the first method for GNN distilla-
tion, using a structure-preserving module to explicitly fac-
tor in the topological structure embedded by the teacher.
(Joshi et al., 2021) proposed using contrastive learning to
implicitly align the node embeddings of the student and
the teacher in a common representation space. Jing et al.
(2021) combined the knowledge of complementary teacher
networks into a single student using a dedicated convolu-
tional operator and topological attribution maps. Zhang
et al. (2022a) used an attention mechanism to weigh differ-
ent teachers depending on the local topology of each node.

6 Experiments

In this section, we assess the performance of DnX and
FastDnX on several popular benchmarks, including artifi-

cial and real-world datasets. We have implemented exper-
iments using PyTorch (Paszke et al., 2017) and Torch Ge-
ometric (Fey and Lenssen, 2019). Our code is available at
https://github.com/tamararruda/DnX.

6.1 Experimental setup

Datasets. We consider six synthetic datasets broadly
used for evaluating explanations of GNNs: BA-House-
Shapes, BA-Community, BA-Grids, Tree-Cycles, Tree-
Grids, and BA-Bottle-Shaped. These datasets are available
in (Ying et al., 2019) and (Vu and Thai, 2020). Each dataset
is a single graph with multiple copies of identical motifs
connected to base subgraphs. These subgraphs either con-
sists of random sample graphs from the Barabási–Albert
(BA) model (Barabási and Albert, 1999) or 8-level bal-
anced binary trees. An explanation associated with a motif-
node must only include motif elements. Thus, base nodes
denote information irrelevant to the prediction of any node.

We also use two real-world datasets: Bitcoin-Alpha and
Bitcoin-OTC (Kumar et al., 2016, 2018). These datasets
denote networks in which nodes correspond to user ac-
counts that trade Bitcoin. A directed edge (u, v) (between
users u and v) denotes the degree of reliability assigned
by u to v, i.e., each edge has a score denoting the degree of
trust. Appendix B provides more details regarding datasets.

Baselines. We compare DnX against three baseline ex-
plainers: GNNExplainer (Ying et al., 2019), PGExplainer
(Luo et al., 2020), and PGMExplainer (Vu and Thai, 2020).
To ensure a valid comparison, we closely follow guide-
lines and the evaluation setup from the original works. We
first generate explanations for a 3-layer GCN (Kipf and
Welling, 2017) with ReLU activation. We also consider
three additional architectures: graph isomorphism net-
works (GIN) (Xu et al., 2019), gated graph sequence neu-
ral networks (GATED) (Li et al., 2016) and auto-regressive
moving average GNNs (ARMA) (Bianchi et al., 2022) This
allows for evaluating the robustness and performance of ex-
plainers across GNNs of different complexities.

Implementation details. We use an 80/10/10% (train/-
val/test) split for all datasets. All GNNs have 3 layers
and are trained for 1000 epochs, with early stopping if the
validation accuracy does not improve in 100 consecutive
epochs. We train all baseline GNNs using Adam (Kingma
and Ba, 2015) with a learning rate of 0.01 with a weight
decay of 5.0 × 10−4. We show the performance of these
GNNs on the benchmark datasets in the supplementary ma-
terial. Importantly, we observe accuracy ≥ 95% for most
data/model combinations.

For the distillation phase in DnX, we use an SGC model
with 3 layers. We use the predictions for all nodes to
train the surrogate SGC. For the optimization, we use

https://github.com/tamararruda/DnX


Table 1: Performance (accuracy) of explanation methods for node-level explanations (i.e., explanations given as subsets of
nodes) in the synthetic datasets. Blue and Green numbers denote the best and second-best methods, respectively. Standard
deviations are taken over 10 runs of the explanation process, distillation is not included. Since FastDnX’s explanations are
deterministic, we mark its variance with not applicable (NA). In most cases, FastDnX achieves the best performance.

Model Explainer BA-House BA-Community BA-Grids Tree-Cycles Tree-Grids BA-Bottle

GCN

GNNExplainer 77.5± 1.2 64.7± 1.0 89.2± 2.0 77.2± 9.0 71.1± 1.0 73.3± 3.0
PGExplainer 95.0± 1.1 70.6± 2.0 86.2± 9.0 92.4± 5.2 76.7± 1.2 98.2± 3.0
PGMExplainer 97.9± 0.9 92.2± 0.2 88.6± 0.9 94.1± 0.8 86.8± 2.0 97.5± 1.5

DnX 97.7± 0.2 94.6± 0.1 89.8± 0.1 83.3± 0.4 80.2± 0.1 99.6± 0.1
FastDnX 99.6± NA 95.4± NA 93.9± NA 87.3± NA 85.0± NA 99.8± NA

ARMA

GNNExplainer 80.9± 1.2 78.5± 1.0 87.3± 1.3 77.7± 1.0 79.3± 1.1 84.3± 1.3
PGExplainer 91.4± 0.1 72.1± 0.1 83.8± 1.0 92.6± 2.1 85.1± 0.1 97.0± 1.1
PGMExplainer 99.3± 0.2 67.5± 0.8 86.8± 0.3 95.0± 0.2 90.6± 0.3 99.7± 0.1

DnX 98.1± 0.2 92.7± 0.2 90.8± 0.1 83.5± 0.4 79.6± 0.3 96.9± 0.2
FastDnX 100.0± NA 95.2± NA 94.7± NA 87.1± NA 87.7± NA 99.9± NA

GATED

GNNExplainer 79.7± 1.0 68.8± 1.0 91.4± 3.0 85.2± 2.0 73.2± 4.0 70.0± 2.0
PGExplainer 96.1± 4.1 70.9± 3.0 90.7± 1.0 91.7± 7.0 83.7± 1.5 98.7± 0.1
PGMExplainer 98.6± 0.1 69.4± 0.5 86.8± 0.3 94.1± 0.2 90.1± 0.2 98.3± 0.2

DnX 98.3± 0.1 91.1± 0.1 90.8± 0.1 85.0± 0.3 82.1± 0.2 98.0± 0.2
FastDnX 99.6± NA 93.5± NA 94.0± NA 76.8± NA 86.8± NA 98.0± NA

GIN
PGMExplainer 60.2± 0.2 84.5± 0.3 68.4± 0.2 89.3± 0.2 85.0± 0.5 55.7± 0.4

DnX 99.0± 0.1 94.0± 0.2 91.1± 0.1 84.1± 0.3 77.3± 0.2 95.3± 0.2
FastDnX 99.6± NA 94.7± NA 93.9± NA 75.2± NA 76.5± NA 99.1± NA

AdamW (Loshchilov and Hutter, 2019) with a learning rate
of 0.1 with a weight decay of 5.0×10−6 and 10000 epochs.

It is worth mentioning that PGExplainer and GNNEx-
plainer — as described in the experimental section of their
respective papers — output edge-level explanations, so
their results are not immediately comparable to that of our
methods and PGMExplainer. More specifically, the two
former output importance scores for each edge. On the
other hand, our methods and PGMExplainer output node
importance scores. Therefore, we convert edge-level ex-
planations to node-level ones by averaging over the scores
of all edges incident in a node. For completeness, we
provide additional results doing the reverse transformation
(i.e., node- to edge-level explanations) in the Supplement.

6.2 Results

Table 1 compares the performance of DnX and FastDnX
against previous art in terms of explanation accuracy, i.e.,
the number of nodes in method’s output that are also in
the ground-truth explanations divided by the total num-
ber of nodes in the latter. Overall, FastDnX is the best-
performing method for all network architectures (GCN,
ARMA, GATED, and GIN) on all datasets but Tree-Cycles
and Tree-Grids. For Tree-Grids, FastDnX places second
for GCN, ARMA and GATED whereas PGMExplainer ob-

tains the highest accuracies. We also note that, while DnX
is often better than GNNExplainer and PGExplainer, its
performance bests FastDnX only in 12.5% of cases. GNN-
and PGExplainer do not appear in the comparison for GIN
since they require propagating edge masks, and Torch Ge-
ometric does not support edge features for GIN.

Table 2 reports the performance of all explainers on the
Bitcoin-Alpha and Bitcoin-OTC datasets. Following pre-
vious work (Vu and Thai, 2020), we use average preci-
sion (AP) as evaluation metric, i.e., the percentage of top-k
nodes obtained from each explainer that are correct, aver-
aged over all nodes to be explained. While running the
experiments, we noticed that the evaluation protocol em-
ployed by Vu and Thai (2020) obtains explanations for a 3-
layer GCN but only considers 1-hop candidate nodes dur-
ing the explanation phase. This implies that some poten-
tially relevant nodes are discarded by design. Table 2 shows
results for both 1-hop and 3-hop settings. DnX is the best-
performing method, and its fast variant is the second-best
across all experiments. For 3-hop candidate nodes, the ab-
solute precision gap between DnX and the best baseline
is at least 14% for Bitcoin-Alpha and 11% for Bitcoin-
OTC. Overall, DnX outperforms GNNExplainer and PG-
MExplainer by a large margin. Note that the performance
of PGMExplainer drops considerably when going from 1-
to 3-hop. We report additional results in the Appendix.
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Figure 1: Time comparison. The bar plots show the average time each method takes to explain a prediction from GCN.
FastDnX is consistently the fastest method, often by a large margin. For the datasets with largest average degree (Bitcoin
datasets), FastDnX is 4 orders of magnitude faster than PGMExplainer and 2 orders faster than the other methods.

Table 2: Performance (average precision) of node-level ex-
planations for real-world datasets. Blue and Green num-
bers denote the best and second-best methods, respectively.
DnX significantly outperforms the baselines (GNN-, PG-,
and PGM-Explainers).

Bitcoin-Alpha Bitcoin-OTC

GNN Explainer top 3 top 4 top 5 top 3 top 4 top 5

GCN
(1-hop)

GNNEx 86.3 85.2 81.2 83.3 81.7 77.0
PGEx 83.5 83.6 79.5 79.9 80.1 76.6
PGMEx 87.3 85.7 84.8 83.3 81.7 80.8

DnX 92.2 89.5 88.4 89.4 86.6 84.7
FastDnX 89.4 87.8 86.8 87.7 85.1 83.4

GCN
(3-hop)

GNNEx 80.1 74.9 70.9 82.4 79.6 70.6
PGEx 81.5 78.1 69.5 78.5 74.5 67.4
PGMEx 67.0 59.8 51.8 63.0 55.2 47.4

DnX 95.8 91.9 87.9 94.8 91.4 86.3
FastDnX 89.8 85.2 80.2 88.0 83.0 78.8

Time comparison. To demonstrate the computational ef-
ficiency of DnX/FastDnX, Figure 1 shows the time each
method takes to explain a single GCN prediction. For a
fair comparison, we also take into account the distillation
step in DnX/FastDnX. In particular, we add a fraction – one
over the total number of nodes we wish to explain – of the
distillation time and add it to the time DnX and FastDnX
actually take to generate an explanation. Notably, both
DnX and FastDnX are consistently much faster than GN-
NExplainer and PGMExplainer. For instance, FastDnX is
more than forty thousand times faster than PGMExplainer
in Bitcoin-Alpha and Bitcoin-OTC.

Distillation results. For completeness, Table 3 shows
the distillation accuracy achieved by our linear network
Ψ when Φ is a GCN, for both the synthetic and the real
datasets. Here, we measure accuracy using the predictions

of the model Φ as ground truth. For all cases, we ob-
serve accuracy superior to 86%. Table 3 also shows the
time elapsed during the distillation step. Similar results are
achieved when distilling ARMA, GATED and GIN models,
these results are shown and described in the Appendix.

Table 3: Distillation accuracy and time for GCN. For all
cases, accuracy > 86% and the distillation phase takes con-
siderably less than 1 minute.

Dataset Accuracy Time (s)

BA-House 94.2± 1.2 13.996
BA-Community 86.6± 0.1 16.447
BA-Grids 99.9± 0.1 2.721
Tree-Cycles 97.7± 0.2 3.820
Tree-Grids 98.0± 0.2 3.803
BA-Bottle 98.5± 0.2 3.181
Bitcoin-Alpha 90.4± 0.1 28.317
Bitcoin-OTC 89.1± 0.2 32.414

Interestingly, although BA-community is the dataset with
the lowest distillation accuracy (86.6%), DnX and FastDnX
achieve significantly better results than the previous state-
of-the-art (cf. Table 1). The rationale for these counter-
intuitive results is that the distiller can differentiate be-
tween motif nodes and base nodes, and this is enough to
get good explanations – since the evaluation set comprises
motif nodes only. More concretely, the confusion matrix
in Figure 2 reveals that, despite the low distillation ac-
curacy, the surrogate model Ψ correctly predicts the base
nodes (classes 1 and 5). Therefore, Ψ achieves high accu-
racy for the binary classification problem of distinguishing
motif and base nodes, supporting our hypothesis.



Table 4: Performance (fidelity) of different methods for node-level explanations (i.e., explanations given as subsets of
nodes) on synthetic datasets. The numbers in Blue and Green denote the best and second-best methods, respectively. The
closer to zero, the better. DnX performs as well as or better than GNNEx, PGEx, and PGMEx in 5 out of 6 datasets.

Explainer BA-House BA-Community BA-Grids Tree-Cycles Tree-Grids BA-Bottle
GNNEx 0.035 −0.276 0.015 −0.810 −0.120 −0.290
PGEx 0.035 −0.232 −0.194 −0.830 −0.175 0.142
PGMEx 0.035 −0.290 0.015 −0.677 −0.005 0.025

DnX 0.035 −0.286 0.008 −0.230 −0.001 0.002
FastDnX 0.035 −0.272 −0.018 −0.240 0.000 0.050

Table 5: Performance (fidelity) of different methods for node-level explanations on real-world datasets. The numbers in
Blue and Green denote the best and second-best method, respectively. The closer to zero the better. We show results for
sparsity levels of 30%, 50% e 70%. In all cases, FastDnX or DnX are among the two best-performing methods.

Sparsity Explainer Bitcoin-Alpha Bitcoin-OTC Cora Citeseer Pubmed

30%

GNNex 0.008 0.060 0.015 0.006 0.000
PGEx 0.101 0.100 0.019 0.051 0.046
PGMEx 0.154 0.155 0.013 0.012 -
DnX 0.028 0.020 0.007 0.006 0.015
FastDnX 0.012 0.036 0.015 0.006 0.015

50%

GNNex 0.148 0.040 0.014 0.003 0.006
PGEx 0.102 0.107 0.014 0.027 0.025
PGMEx 0.102 0.118 0.011 −0.003 -
DnX 0.012 0.018 0.000 0.009 0.010
FastDnX 0.004 0.056 0.000 0.003 0.005

70%

GNNex −0.004 0.016 0.015 −0.009 −0.005
PGEx 0.091 0.099 −0.003 −0.006 0.005
PGMEx 0.088 0.099 0.009 0.008 -
DnX 0.000 0.000 −0.004 0.003 0.000
FastDnX 0.004 −0.012 0.000 −0.003 0.010

Fidelity results. To further assess the quality of expla-
nations, we consider a fidelity metric — we use Fidelity-
as in (Yuan et al., 2022). This metric measures how the
GNN’s predictive performance (accuracy) fluctuates when
we classify nodes based only on the subgraph induced by
the explanations. When the fidelity is positive, there is a
decrease in performance. When it is negative, using “only
the explanation” yields better predictions on average. Ta-
bles 4 and 5 report fidelity for the synthetic and the real
datasets, respectively. Note that we have considered three
additional real-world datasets (citation networks): Cora,
Citeseer, and Pubmed. Results obtained from DnX for the
synthetic datasets are the best ones in 50% of the cases.
It is interesting to observe that for Tree-Cycles and Tree-
Grids, DnX/FastDnX are not the best performing ones wrt
accuracy (Table 1), but are the best ones wrt fidelity (Table
4). For real datasets, in most cases, either DnX or FastDnX
achieves the best results overall. Importantly, this corrob-
orates the results we observed for the precision metric on
Bitcoin-Alpha/OTC datasets. We note that it was infeasible
to run PGMExplainer on Pubmed as explaining one predic-
tion with it can take up to an hour in our local hardware.

7 Discussion
Are benchmarks too simple? Given that DnX/FastDnX
often achieve remarkable performance by explaining sim-
ple surrogates, a natural questions arises: are these popular
benchmarks for GNN explanations too simple? Since these
benchmarks rely on model-agnostic ground-truth explana-
tions, we now investigate inductive biases behind these ex-
planations, and show that they can be easily captured.

Figure 3 reports the degree distribution of motif and base
nodes for all synthetic datasets. Recall that, by design,
ground-truth explanations are always given by motif nodes.
Note also that support for the distributions motif and base
nodes have almost no overlap for most datasets (except
Tree-Cycles & Tree-Grids). Thus, any explainer capable of
leveraging degree information would obtain high accuracy.

To make this more concrete, we propose a very simple
baseline ”explainer” that outputs explanations based on
the normalized adjacency matrix. In particular, we de-
fine the importance of node j to the prediction of node i
as the (i, j)-entry of ÃL, with L = 3. With this simple
baseline, we obtain the following accuracy values: 99.9%
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Figure 2: Confusion matrix of the distillation process for
the BA-Community dataset. Classes 1 and 5 correspond to
base nodes. While the surrogate misclassifies many motif
nodes, it is able to correctly predict almost all base ones.

(BA-House), 98.1% (BA-Community), 99.9% (BA-Grids),
95.9% (Tree-Cycles), 90.4% (Tree-Grids), and 99.9% (BA-
Bottle). Notably, this baseline would rank 1 if included as
an explanation method for GCNs in Table 1.

Faber et al. (2021) have also raised issues regarding these
benchmarks, proposing alternative datasets as well. We
have run FastDnX to explain a 2-layer GCN model for two
of their proposed datasets (Community and Negative ev-
idence), and obtained remarkably good accuracy results:
94.0% and 99.5%, respectively. Also, simply ranking
nodes based on the entries of ÃL (L = 2) achieves ac-
curacy of 93.0% (Community) and 99.6% (Neg. evidence).

Limitations. While simple graph models (like SGC)
have been shown to achieve good performance on node-
level classification tasks, they fail to rival recent GNNs for
graph-level prediction tasks (Huang et al., 2021; Wu et al.,
2019). Naturally, we would not expect DnX and FastDnX
to work well out-of-the-shelf to explain graph-level pre-
dictions. However, our methods could be easily extended
to use more powerful linear GNNs that incorporate differ-
ent types of diffusion operators (Rossi et al., 2020), or use
long-range residual connections (Chen et al., 2020).

8 Conclusion

This work proposes DnX as a simple and intuitive two-step
framework for post-hoc explanation of GNNs. First, we
distill the GNN into a simpler and more interpretable one,
that serves as a global surrogate. Then, we leverage the
simple structure of the surrogate to extract explanations.
Experiments show that (Fast)DnX outperforms the prior art
on a variety of benchmarks. Remarkably, our simple design
allows FastDnX to run at least 200× faster than relevant
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Figure 3: Degree distribution of motif and base nodes.
While we can overall distinguish motif and base nodes
from degree information on BA-based datasets, there is a
significant overlap on Tree-Cycles and Tree-Grids.

baselines on real-world tasks. Additionally, we provide
theoretical results that justify our framework and support
our empirical findings. Besides advancing the current art,
we hope this work will motivate other researchers to focus
on developing compute-efficient explainability methods.
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A Proofs

Proof of Lemma 1. For node u, it is known, by definition,
that

∥Ψ(Gu)−Ψ(t(Gu, Eu))∥2
=
∥∥∥σ (ÃLXΘ

)
u
− σ

(
ẼLXΘ

)
u

∥∥∥
2

=
∥∥∥σ [(ÃLXΘ

)
u

]
− σ

[(
ẼLXΘ

)
u

]∥∥∥
2
,

if we call σ the softmax function and ẼL the powered,
normalized adjancency matrix ÃL after applying the ex-
planation Eu. Because softmax is a Lipschitz continuous
function with Lipschitz constant 1 with respect to norm
∥·∥2 (Gao and Pavel, 2018) and considering induced ma-
trix norm compatibility property (van de Geijn and Myers,
2022, Lemma 1.3.8.7),
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=
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2
.

Similarly, for a perturbation G′
u of Gu given by Σ′

u being
added to X ,

∥Ψ(G′
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Computing the mean over K ∪ {Gu}:
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u

∥∥∥
2

+
∑
G′
u∈K

∥[(X +Σ′
u)Θ]⊺∥2

∥∥∥ÃL
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When Σ is limited, the constant γ may not depend on Σ.

Proof of Theorem 1. We know that

∥Φ(G′
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So, by using triangle inequality and Lemma 1,
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Proof of Lemma 2. From the proof of Lemma 1, we know
that
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We can work in the perturbation summand:∑
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with

• ϵj,i ∼ N (0, σ2);

• Zj,i ∼ N (0, 1);

• Q ∼ χ2
|K|nd;

• (n, d) = dim(X).

If αp is the p-percentile of Q, then the probability of the
last inequality is p:
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Notice that, when σ approaches zero, the bound’s proba-
bilistic characteristic becomes negligible.

Finally, if we ask the bound to be ξ, then the probability is
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being the c.d.f. of Q.

Proof of Theorem 3. The objective function of the problem
in Equation 5 can be written as
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Note also that

Q = P ⊺P with P =
√
2Θ⊺X⊺diag

[(
ÃL

i

)⊺]
,

thus Q is symmetric and positive semidefinite. Since both
the objective function and feasible set are convex, the opti-
mization problem is also convex.

B Datasets and implementation details

B.1 Datasets

Bitcoin-Alpha and Bitcoin-OTC are real-world networks
comprising 3783 and 5881 nodes (user accounts), respec-
tively. Users rate their trust in each other using a score
between −10 (total distrust) and 10 (total trust). Then, user
accounts are labeled as trusted or not based on how other
users rate them. Accounts (nodes) have features such as av-
erage ratings. Ground-truth explanations for each node are
provided by experts. The synthetic datasets are available in
(Ying et al., 2019) and (Vu and Thai, 2020). Table 6 shows
summary statistics for all datasets.

Table 6: Statistics of the datasets used in our experiments.

Dataset nodes edges labels

BA-House 700 4110 4
BA-Community 1400 8920 8
BA-Grids 1020 5080 2
Tree-Cycles 871 1950 2
Tree-Grids 1231 3410 2
BA-Bottle 700 3948 4
Bitcoin-Alpha 3783 28248 2
Bitcoin-OTC 5881 42984 2

B.2 Implementation details

We ran all experiments using a laptop with an Intel Xeon
2.20 GHz CPU, 13 GB RAM DDR5, and RTX 3060ti
16GB GPU.



Table 7: Performance (mean and standard deviation of accuracy) in node classification tasks for the models to be explained.

BA-House BA-Community BA-Grids Tree-Cycles Tree-Grids BA-Bottle Bitcoin-Alpha Bitcoin-OTC
GCN 97.9± 1.6 85.6± 1.7 99.9± 0.2 97.8± 1.2 88.9± 1.8 99.0± 0.1 93.3± 0.4 93.2± 0.6
ARMA 98.1± 2.3 92.8± 2.3 99.5± 0.6 96.9± 1.5 92.4± 2.3 99.6± 0.9 93.6± 1.4 92.9± 1.1
GATED 98.0± 1.3 92.3± 2.7 99.9± 0.2 97.8± 2.2 94.4± 3.0 99.4± 0.6 94.4± 1.3 93.8± 0.7
GIN 95.6± 5.0 87.0± 1.5 99.4± 0.6 97.8± 1.1 91.4± 2.6 98.8± 1.0 93.4± 1.0 92.6± 1.1

The architecture of the GNNs to be explained in this work
are: i) a GCN model with 3 layers (20 hidden units) fol-
lowed by a two-layer MLP with 60 hidden units; ii) an
ARMA model with 3 layers (20 hidden units each) fol-
lowed by a two-layer MLP with 60 hidden units; iii) a
GIN model with 3 layers (20 hidden units each); and iv)
a GATED model with 3 layers (100 hidden units) followed
by a two-layer MLP with 300 hidden units. We train all
these GNNs using with a learning rate of 0.001. All mod-
els use ReLU activations in their hidden units. We also use
the one-hot vector of the degree as node features.

For computational reasons, on Bitcoin datasets, we provide
results for 500 test nodes whenever the candidate expla-
nation set contemplates 3-hop neighborhood (matching the
GNNs we want to explain). For 1-hop cases, we use the
full set of 2000 nodes as in the original setup.

Node and edge-level explanations. DnX and FastDnX
were originally designed to generate node-level explana-
tions like PGM-Explainer but some baselines such as PG-
explainer and GNNexplainer provide edge-level explana-
tions. For a fair comparison with these baselines, we use
a procedure to convert edge-level explanations to node-
level ones (and vice-versa). To convert node scores to
edge scores, we sum the scores of endpoints of each edge,
i.e., an edge (u, v) gets score su,v = su + sv where su
and sv are node scores. For the reverse, we say su =
|Nu|−1∑

j∈Nu
su,j where Nu is the neighborhood of u.

C Additional experiments

GNN performance. Table 7 shows the classification ac-
curacy of each model we explain in our experimental cam-
paign. Means and standard deviations reflect the outcome
of 10 repetitions. All classifiers achieve accuracy > 85%.

Distillation. Table 8 shows the extent to which the dis-
tiller network Ψ agrees with the GNN Φ. We mea-
sure agreement as accuracy, using the predictions of Φ as
ground truth. The means and standard deviations reflect the
outcome of 10 repetitions. Additionally, Table 8 shows the
time elapsed during the distillation step. For all cases, we
observe accuracy values over 88%.

Results for edge-level explanations. Table 9 and Ta-
ble 10 complement Tables 1 and 2 in the main paper,

Table 8: Distillation accuracy and elapsed time for ARMA,
GATED and GIN. For all cases, accuracy > 88% and learn-
ing Ψ takes less than a minute.

Model Dataset Accuracy Time (s)

ARMA

BA-House 97.7± 0.01 7.254
BA-Community 96.7± 0.03 22.848
BA-Grids 100.0± 0.00 2.701
Tree-Cycles 98.8± 0.03 6.331
Tree-Grids 91.7± 0.15 4.152
BA-Bottle 100.0± 0.00 6.312
Bitcoin-Alpha 91.3± 0.01 28.613
Bitcoin-OTC 91.2± 0.03 39.832

GATED

BA-House 98.0± 0.01 5.954
BA-Community 92.1± 0.04 27.847
BA-Grids 100.0± 0.00 2.679
Tree-Cycles 99.4± 0.04 6.643
Tree-Grids 90.9± 0.09 4.609
BA-Bottle 100.0± 0.00 6.171
Bitcoin-Alpha 91.3± 0.02 26.611
Bitcoin-OTC 91.1± 0.01 42.626

GIN

BA-House 93.4± 0.46 11.461
BA-Community 90.1± 0.13 24.204
BA-Grids 100.0± 0.00 3.884
Tree-Cycles 95.8± 0.02 3.335
Tree-Grids 88.1± 0.06 5.198
BA-Bottle 100.0± 0.01 6.970
Bitcoin-Alpha 95.5± 0.03 44.359
Bitcoin-OTC 89.8± 2.04 55.860

showing results for edge-level explanations. All experi-
ments were repeated ten times. For all datasets, we mea-
sure performance in terms of AUC, following Luo et al.
(2020). Both tables corroborate our findings from the main
paper. In most cases, FastDnX is the best or second-
best model for all models and datasets. For GCN and
GATED, PGExplainer yields the best results. Overall, both
Dnx and FastDnX outperform GNNExplainer and PGM-
Explainer. Remarkably FastDnX and DnX’s performance
is steady, with small fluctuations depending on the model
we are explaining. The same is not true for the compet-
ing methods, e.g., PGExplainer loses over 15% AUC for
the BA-Community (cf., GCN and ARMA). Note also that
FastDnX and DnX are the best models on the real-world
datasets.



Table 9: Performance (mean and standard deviation of AUC) of explainer models on synthetic datasets for edge-level
explanations. Blue and Green numbers denote the best and second-best methods, respectively.

Model Explainer BA-House BA-Community BA-Grids Tree-Cycles Tree-Grids BA-Bottle

GCN

GNNExplainer 82.4± 6.0 71.1± 6.0 80.9± 1.0 58.4± 1.0 53.9± 2.0 82.8± 1.0
PGExplainer 99.9± .01 99.9± .01 94.1± 9.0 92.3± 5.0 79.4± 2.0 99.9± .01

PGMExplainer 56.2± 0.3 53.0± 0.4 68.9± 0.2 62.1± 0.2 66.3± 0.4 53.4± 0.5

DnX 95.7± .09 87.5± .09 97.3± .03 80.5± .02 72.6± 0.1 94.5± 0.1
FastDnX 99.4± NA 93.0± NA 96.7± NA 89.1± NA 77.4± NA 99.5± NA

ARMA

GNNExplainer 80.8± 1.0 75.1± 1.0 69.4± 0.1 59.2± 2.0 59.9± 1.0 85.8± .01
PGExplainer 93.3± 1.0 82.7± .01 93.1± .01 92.4± 2.0 84.0± .03 98.0± .02

PGMExplainer 82.2± 0.2 49.6± 0.7 40.4± 0.2 64.7± 0.2 69.0± 0.3 63.1± 0.3

DnX 95.7± .06 87.9± .07 97.3± .04 80.4± 0.3 72.8± 0.1 94.4± .08
FastDnX 99.7± NA 96.8± NA 97.9± NA 87.1± NA 78.4± NA 99.7± NA

GATED

GNNExplainer 79.1± 2.0 59.2± 3.0 69.4± 2.0 62.6± 2.0 53.6± 1.0 73.9± 2.0
PGExplainer 99.9± 2.0 99.1± 2.0 99.8± 1.0 76.5± 9.0 97.0± 3.0 99.9± 0.1

PGMExplainer 49.3± 0.4 47.2± 0.5 46.2± 0.3 45.8± 0.6 53.1± 0.8 49.1± 0.7

DnX 95.8± .07 84.4± .09 97.3± .02 81.1± 0.1 72.8± 0.1 94.4± .09
FastDnX 99.5± NA 93.7± NA 96.6± NA 89.2± NA 78.6± NA 99.6± NA

GIN
PGMExplainer 52.4± 0.3 52.0± 0.4 52.2± 1.0 67.4± 0.2 63.9± 0.2 53.3± 0.4

DnX 95.7± 0.1 87.2± 0.1 97.3± 0.1 81.8± 0.2 72.0± 0.1 94.2± 0.1
FastDnX 97.9± NA 91.0± NA 97.1± NA 86.3± NA 72.3± NA 97.0± NA

Table 10: Performance (AUC) of edge-level explanations
for real-world datasets, measured over 500 test nodes.

Model Explainer Bitcoin-Alpha Bitcoin-OTC

GCN
(3-hop)

GNNex 94.0 97.3
PGEx 59.7 54.2
PGMEx 75.8 52.7
DnX 97.1 98.1
FastDnX 97.3 99.1

ARMA
(3-hop)

GNNex 79.6 92.3
PGEx 47.8 45.4
PGMEx 76.2 73.8
DnX 96.4 98.7
FastDnX 97.4 99.1

GATED
(3-hop)

GNNex 92.5 93.6
PGEx 34.7 33.7
PGMEx 86.3 83.1
DnX 96.3 98.6
FastDnX 97.2 99.1

GIN
(3-hop)

PGMEx 52.8 76.1
DnX 96.4 98.7
FastDnX 97.5 98.9

More results for node-level explanations. Table 11
shows results for ARMA, GATED, and GIN. As observed
in Table 2 for GCNs, DnX FastDnX are the best methods.

Table 11: Performance (average precision) of node-level
explanations for real-world datasets, measured over 500
test nodes.

Bitcoin-Alpha Bitcoin-OTC

Model Explainer top 3 top 4 top 5 top 3 top 4 top 5

ARMA
(3-hop)

GNNEx 80.9 78.9 74.5 73.2 69.5 64.0
PGEx 72.5 67.8 65.0 69.7 68.7 61.45
PGMEx 73.8 66.4 58.3 69.1 62.8 54.9

DnX 95.0 90.1 84.9 93.6 88.1 83.2
FastDnX 90.2 85.8 81.0 87.7 83.3 79.2

GATED
(3-hop)

GNNEx 80.1 75.1 769.6 75.9 70.9 66.0
PGEx 75.4 74.8 67.8 72.5 70.5 65.1
PGMEx 80.2 76.5 72.4 77.5 72.1 67.3

DnX 94.4 89.6 84.4 93.4 88.9 83.5
FastDnX 89.6 85.3 80.0 88.0 83.4 79.0

GIN
(3-hop)

PGM-Ex 58.7 49.2 40.8 57.6 47.8 40.2

DnX 94.3 88.9 83.2 94.0 89.2 83.6
FastDnX 85.0 80.4 74.6 82.6 77.1 71.3


	Introduction
	Background
	DnX: Distill n' Explain
	Knowledge distillation
	Explanation extraction

	Analysis
	Additional related works
	Experiments
	Experimental setup
	Results

	Discussion
	Conclusion
	Proofs
	Datasets and implementation details
	Datasets
	Implementation details

	Additional experiments

