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Fig. 1. LargeNetVis is a web-based visual analytics system designed to support the visual exploration of temporal networks with up
to a few thousand nodes and timestamps. The system is composed of four linked visual components. While the Taxonomy Matrix
(A) and Global View (B) enable global-level analysis, the node-link diagram (C) and the Temporal Activity Map (D) enable structural
and temporal local-level analysis, respectively. The system also provides a panel with the network, community, or node numerical
information (Community detail (E)). A tooltip with extra information is shown when a community is hovered over in Global View (F).

Abstract— Temporal (or time-evolving) networks are commonly used to model complex systems and the evolution of their components
throughout time. Although these networks can be analyzed by different means, visual analytics stands out as an effective way for
a pre-analysis before doing quantitative/statistical analyses to identify patterns, anomalies, and other behaviors in the data, thus
leading to new insights and better decision-making. However, the large number of nodes, edges, and/or timestamps in many real-world
networks may lead to polluted layouts that make the analysis inefficient or even infeasible. In this paper, we propose LargeNetVis, a
web-based visual analytics system designed to assist in analyzing small and large temporal networks. It successfully achieves this goal
by leveraging three taxonomies focused on network communities to guide the visual exploration process. The system is composed of
four interactive visual components: the first (Taxonomy Matrix) presents a summary of the network characteristics, the second (Global
View) gives an overview of the network evolution, the third (a node-link diagram) enables community- and node-level structural analysis,
and the fourth (a Temporal Activity Map – TAM) shows the community- and node-level activity under a temporal perspective.

Index Terms—Information Visualization, Interactive Visualizations, Human-Computer Interaction, Electronic Health Records.

1 INTRODUCTION

Graphs are mathematical objects used to map the relation (edges) of
different elements (nodes). Complex networks use graphs to model
real-world events by studying the structure and dynamics of complex
systems [24]. Moreover, when the dynamics of these networks are
mapped through the time information, they are called temporal (or time-
evolving) networks [38]. Information visualization techniques help in
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analyzing temporal networks as they allow exploratory analysis and
also enhance the identification of structural and temporal patterns that
involve individuals and groups of elements. Visualization layouts have
been proposed in the last decades for these purposes, from timeline-
based approaches and animations to hybrid visualizations [12].

In our context, visual scalability refers to the ability of a layout to
work properly and adapt to small and large networks. This capability is
particularly important considering the number of real-world networks
regularly created with the acquisition of big data from different appli-
cation domains, including online social media, biological, and others.
A crucial definition is, therefore, what a large network is. Such defini-
tion depends on the type of study and the number of elements in the
network. Non-temporal networks with millions of nodes and edges are
commonly analyzed in statistical studies, and these networks are often
referred to as large networks [70]. For visualization purposes, on the
other hand, this definition may vary according to the task and aspects
such as edge density and visual clutter. To exemplify how abstract
this definition is in this context, while Mi et al. [46] consider large
(non-temporal) networks as those with millions of nodes, a more recent



survey evaluated the size of networks in 124 visualization papers and
classified networks with more than 200 nodes as very large ones [75].

We consider in this work large temporal networks as those with a few
thousand nodes or timestamps. This decision was made based on the
trade-off between the spread of nodes and edges throughout time, which
may reduce the number of elements simultaneously shown depending
on the layout (especially when adopting timeslicing [51]), and the
increased complexity that the temporal dimension brings to timeline-
based and animated visualizations (e.g., mental map preservation).
Although layouts and visualization systems designed to handle temporal
networks work well with relatively small networks, most of them are
ineffective used when dealing with large ones. The main reason for
that is the high level of visual clutter in the layouts, which occurs
depending on the network density and dynamics and is mainly caused
by overlaps of nodes, edges, or groups [12]. Layouts that suffer from
this issue include the traditional node-link diagram (animated or not),
alluvial diagrams [56], GraphFlow [20], and the Massive Sequence
View (MSV) representation [68]. Since each layout can benefit from a
set of features, different methods have been proposed to improve layout
readability and thus lead to new insights into the data. Examples include
methods focused on node positioning [68], node and edge sampling [2,
77], timeslicing [51, 71], and representation simplification [1, 63, 76].
Even considering recent advances in layouts, algorithms for clutter
reduction, and interactive visualization systems, enabling compelling
visual exploration of large temporal networks remains a challenging
and open problem [12].

Meaningful groups of nodes are frequently observed in real-world
temporal networks, for example, those composed of nodes that interact
more often between themselves than with nodes from other groups, the
so-called communities [27]. Communities can represent, e.g., groups
of friends, co-authors, brain regions, similar proteins in a biological
network, and others. In this paper, we propose LargeNetVis, a web-
based visual analytics system created to assist experts and practitioners
in analyzing small and large temporal networks. The system relies on
network community detection to guide users in finding and inspect-
ing regions of interest that may contain potentially relevant network
elements. More specifically, LargeNetVis leverages three community
taxonomies to allow users to understand these communities’ structural,
temporal, and evolutionary patterns. Furthermore, users can explore
communities with characteristics of interest and analyze their elements’
behaviors through the four linked views provided by the system.

In summary, our main contributions are: i) Integration of three tax-
onomies for communities in temporal networks, each accounting for a
particular and relevant type of pattern; ii) LargeNetVis, a visual ana-
lytics system with multiple linked views that leverages the mentioned
taxonomies to enhance the exploration of large temporal networks —
the usefulness and effectiveness of the system were validated through a
user study with 14 participants not involved in the system’s develop-
ment; and iii) Two usage scenarios showing relevant and non-trivial
patterns found in large and real-world networks.

2 RELATED WORK

Different strategies for modeling temporal changes and identifying
patterns can be employed, e.g., with the use of graphlets and motifs [18,
35, 39]. In this study, we leverage the temporal network community
structure to identify patterns and enhance the visual analysis. This
section discusses existing community taxonomies, aspects related to
the visualization, and available systems.

2.1 Network community taxonomies
Different taxonomies have been proposed for network visualization.
They categorize the network elements according to different criteria,
e.g., clusters or dimensions [17, 57], thus optimizing the process of
finding elements with characteristics of interest. LargeNetVis lever-
ages three taxonomies focused on different aspects of community cate-
gorization — the community’s structural, temporal, and evolutionary
behaviors — to guide the network exploration. The categories con-
sidered by these taxonomies have also been analyzed by previous
works [23, 40, 43, 49, 50, 56, 72] and represent the core of our approach.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2. Structural (a-e) and temporal (f-i) taxonomies. Vertical bars in the
temporal taxonomy represent edges (y-axis) over time (x-axis).

Structural. A useful manner of understanding a network’s overall
topology is categorizing its communities according to their structural
patterns, such as stars, cliques, circulars, and others. For example, stars
(see definition below) are commonly found on social networks. Differ-
ent names for the same categories have been used in previous studies,
such as clique and full, star and egocentric, loop and circular, among
others [40, 72]. Based on Chenhui et al.’s work [40], we use five types
of community structure classification: Tree, Star, Circular, Clique, and
Low-connectivity (Fig. 2(a-e)). The Tree topology (Fig. 2(a)) has no
cycles and differs from the Star topology (Fig. 2(b)), which corresponds
to a central node concentrating most of the connections, with the periph-
eral/children nodes usually with only one connection. In the Circular
case (Fig. 2(c)), every node has only two connections. The Clique
(Fig. 2(d)) represents a case where all nodes are connected with each
other (complete graph). Cases where none of the previous categories are
suitable are called Low-connectivity ones (Fig. 2(e)). In real-world net-
works, a single community may contain more than one type of structure
(details in Sec. 7) or be formed by variations of these types (e.g., a circu-
lar formation with some additional edges linking non-adjacent nodes).
By similarity, we categorize communities from this latter case as their
reference structure (as circular in the previous example, for instance).

Temporal. Another important aspect concerns the overall temporal
behavior of a community’s internal edges (intra-community edges),
including their temporal activity (i.e., how frequent they occur over
time) and distribution (i.e., how dispersed they are from each other). A
previous study focused on a classification suitable for these temporal
patterns, called Temporal taxonomy [43]. The first part of this taxon-
omy is the frequency, i.e., if the intra-community edges are so frequent
over time that the community is categorized as having Continuous ac-
tivity, or if there is occasional activity and the edges occur in a Sporadic
fashion. The taxonomy also considers dispersion information, i.e., if
the edges of consecutive timestamps are close to each other (Grouped)
or if they are sparse and, consequently, Dispersed. By combining fre-
quency and dispersion, this taxonomy creates a temporal classification
that comprises four combinations, as illustrated in Fig. 2(f-i). In the
first two combinations (Fig. 2(f-g)), communities are categorized as
Sporadic and Dispersed (Fig. 2(f)), i.e., there are no dense regions
and at least one timestamp has no edges, or Sporadic and Grouped
(Fig. 2(g)), when all edges are in a dense region but not continuous
over time (we can think of as peaks of seasonal events). On the other
hand, edges may occur frequently enough to be considered Continuous,
and they can be grouped (Fig. 2(i)) or not (Fig. 2(h)).

Evolution. The final aspect that we consider is the network community
evolution, which is essential to understand the dynamics and lifecycle
of these groups of nodes, with events such as birth and growth. We
consider the community taxonomy proposed by Pereira et al. [50],
which includes six categories of evolutionary events: Birth, Death,
Grow, Contract, Split and Merge. The first appearance of a community
is classified as Birth, while disappearance is considered as Death. A
community may maintain most of its nodes and Grow with the addition
of new ones or Contract with the loss of nodes. A community may also
Split into two new ones or Merge, leading to a new community.

2.2 Visualization of temporal networks
For temporal network visualization, layouts may be divided into
timeline-based and animation techniques [12]. While animation suffers
from mental map preservation in timestamps with high variation in
the number of elements shown, timeline-based layouts usually lack
screen space for a high number of nodes and timestamps. Among the
animated layouts, the node-link diagram is still one of the most pre-
ferred representations [12]. It is used, e.g., to visualize online networks,
where nodes and edges arrive in a real-time manner [19]. While it



can suffer from scalability limitations when applied to networks with
several nodes and edges per timestamp, representation simplification
(e.g., super nodes [63]) may attenuate this problem. Despite strengths
and limitations, both timeline and animations are efficient for tempo-
ral tasks. Timeline representations, however, are better for tasks that
depend on the analysis of more than two timestamps [12].

A few studies try to enable visual analyses of non-temporal networks
with millions of nodes [42, 46]. These studies, however, have focused
only on general rather than local structures. Their visualizations lack
user validation and are not suitable for temporal networks. In the con-
text of temporal hypergraphs, i.e., temporal networks where a single
edge (called hyperedge) can connect more than two nodes, Valdivia
et al. [67] proposed a timeline-based visualization that contains an
aggregation of hyperedges and was tested in hypergraphs with up to
500 nodes. Also focusing on temporal hypergraphs, Fischer et al. [25]
proposed a matrix-based visualization containing filtering, ordering,
and interaction techniques. Temporal hypergraphs are significantly dif-
ferent from regular temporal networks, especially regarding structural
patterns. Our focus is on the latter type of network.

Some studies combine temporal and structural analysis with sum-
marization methods without considering community taxonomies [76].
The use of a network community taxonomy to summarize the visu-
alization was initially proposed by Li et al. [40]. They focused on
non-temporal networks and used the Structural taxonomy described in
Sec. 2.1. Later, Wang et al. [72] extended this approach to temporal
networks. They proposed a pipeline to group nodes according to com-
mon characteristics (e.g., via community detection), applying optional
sampling, classifying the groups according to the Structural taxonomy,
and providing a system with multiple views containing animation-based
visualization, network statistics, and parallel coordinates. While Wang
et al. demonstrated the importance of using a network community
taxonomy to simplify temporal network visualization, they focused
only on the structural aspect of the network and did not validate their
pipeline and system with a user study.

Timeline-based techniques can use timeslices to represent the net-
work time dimension. In our context, a timeslice is defined as a short
observation period (e.g., 1-hour or 1-day length) and comprises all
nodes and edges that occur in that period. Note that each timeslice
includes several timestamps of the network. Although timeslicing meth-
ods are commonly used with discrete timestamps, they fail to reliably
represent networks with continuous real-valued time (the so-called
continuous (or event-based) dynamic networks) [33, 61, 62]. A set of
visualization techniques have been proposed for this type of network,
such as the DynNoSlice [61, 62], which employs space-time cubes to
visualize the network’s events, and MultiDynNoS [5], which presents a
multilevel approach to reduce running time when visualizing these net-
works. LargeNetVis is designed for networks with discrete timestamps.

2.3 Comparison with network visualization systems
We compared different systems for network visualization using the
corresponding papers’ descriptions, system images, case studies, com-
prehensive surveys (e.g., [11, 12, 69]), and external videos, when
available. Related to network visualization, there is a variety of sys-
tems and papers that propose techniques to enhance pattern identifi-
cation [6, 9, 10, 16, 22, 25, 28, 31, 37, 41, 45, 54, 58, 68], in which we
applied a selection criterion to compare. We filtered in systems that
have animated or timeline-based representations, high relevance and
similarity with our system, and a high number of paper citations and/or
downloads. Matching the previous criteria, we selected six systems.

Table 1 summarizes seven systems considering 8 relevant aspects
inspired by [60]. The grouping category (1) is related to node cluster-
ing or community detection, and sampling (2) is whether the system
provides node, edge, or group sampling. The temporal dimension can
be considered through animation (3) and/or timeline (4). We focus on
the latter due to its advantage in temporal tasks that depend on more
than two timestamps [12]. Likewise, a system may enable analysis at a
global scale (overview) (5) and/or offer views dedicated to analyzing
particular groups of nodes or time intervals of interest (local view) (6).

Table 1. Comparison of network visualization systems according to: (1)
grouping; (2) sampling; (3) animation; (4) timeline; (5) overview; (6) local
view; (7) visual scalability; (8) multiple views.

1 2 3 4 5 6 7 8

Gephi [9] ✓ ✓ ✓ ✓ ✓ ✓
Pajek [10] ✓ ✓ ✓ ✓ ✓
DyNetViewer [41] ✓ ✓ ✓ ✓ ✓
DyNetVis [44] ✓ ✓ ✓ ✓ ✓ ✓
DyEgoVis [28] ✓ ✓ ✓ ✓ ✓
Wang et al.’s [72] ✓ ✓ ✓ ✓ ✓ ✓
LargeNetVis (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

We consider that a system offers visual scalability (7) if it works for
small and large networks — we considered the existing case and user
studies to assess this criterion. Finally, the multiple views category (8)
refers to whether the system provides different views on a single screen.
Notably, DyNetVis [44] is the only system among the compared ones
that provide both timeline and animations, while only Wang et al.’s [72],
DyEgoVis [28] and ours have multiple views; these three are also the
only web-based systems in the table. At last, the only system from
Table 1 validated through a user study is ours (Sec. 6).

3 DESIGN TASKS

Different task taxonomies have been proposed to guide the design and
evaluation of layouts and systems for temporal network visualization [3,
4, 7, 36]. As we are interested in enabling the analysis of structural and
time-evolving patterns at both global and local granularity levels (i.e.,
network, groups, and nodes), we designed our views and interactions to
meet tasks considering the taxonomies proposed by Bach et al. [7] (tax-
onomy 1), and by Ahn et al. [3] (taxonomy 2). Taxonomy 1 considers
three categories of low-level tasks, named temporal (when), topolog-
ical (where), and behavioral (what), that may be combined to obtain
compound tasks. According to this taxonomy, a system must have the
following characteristics to support tasks from these categories [7]:
T1: allow easy identification and reaching of specific time steps (when);
T2: allow easy identification, situation, and tracking of elements (e.g.,
nodes or groups) with particular properties (where);
T3: allow the understanding of the nature of changes that affect the
elements (what).

Focused on aspects related to the network evolution, taxonomy 2
describes tasks related to the three dimensions entity (an element of
interest, such as node, edge, group, network), property (a characteristic
of an element, given by centrality measures or domain properties, for
example), and temporal feature (an event that causes changes in the
state of an element, such as growth or death). Although all three dimen-
sions are somehow related to categories also foreseen by taxonomy 1,
the last dimension provides more details about existing types of tempo-
ral events, four of which are also observed in the community evolution
taxonomy described in Sec. 2.1 (birth/death and growth/contraction).
Since the community evolution taxonomy considers merge/split events
in addition to the four mentioned types, we restricted our task T3 to
consider all six types of events from this taxonomy. Finally, our system
was also designed to support:
T4: identification of two other types of events from taxonomy 2’s
third dimension: single occurrences (i.e., the addition or deletion of an
entity) and peak or valley events (i.e., abrupt increases or decreases of
an element property).

4 LARGENETVIS

This section describes LargeNetVis’s workflow and visual components,
which were developed to support our design tasks as depicted in Table 2.

4.1 Workflow
Fig. 3 describes the system’s workflow. First, users provide a temporal
network of interest and its respective node metadata (optional). Then,
they can apply one of the node and edge sampling methods offered
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Fig. 3. LargeNetVis’s workflow. (a) The user provides a network of interest and the corresponding node metadata (optional). He/She can also apply
node/edge sampling and adjust the minimum community size parametrization. (b) The system divides the network into timeslices of equal length and
then detects network communities inside each of them. These communities are then categorized according to three taxonomies from the literature.
(c) Finally, users explore communities with characteristics of interest and their nodes and edges through the four linked visual components.

by the system, including random node/edge sampling and Snowball
sampling [64], a method suitable for large networks. Other methods,
e.g., EOD [77], could be easily incorporated into the system. Users are
also free to report the minimum number of nodes that a network com-
munity must have in order not to be ignored by the visualization — the
community detection procedure is a further step that will be explained
later on. Very small communities are often perceived in large networks,
and they can pollute the layout with irrelevant information.

The next step is to divide the network data according to a user-
defined number of timeslices (Fig. 3(b)). To assist users in choosing a
proper number of timeslices for analysis, LargeNetVis runs the nonuni-
form timeslicing method proposed by Ponciano et al. [51] with all
edges having the same importance. By considering local edge density,
the method defines the best timeslice length for each sliding window of
timestamps. LargeNetVis then suggests a range of potentially suitable
numbers of timeslices based on how many timeslices are required to
meet from the minimum to the maximum length returned by Ponciano
et al.’s algorithm. Within this range, the default value meets the average
timeslice length, as recommended for global pattern identification [51].
Note that the choice of the number of timeslices strongly affects the
quality of results and response time of the remaining workflow steps,
consequently affecting the visualization and pattern identification.

For each timeslice, network communities are detected using the
Instant Optimal strategy [53], which prioritizes the quality of the com-
munity structure rather than temporal consistency. In this strategy,
communities are detected separately for each timeslice and the overlap
between communities from consecutive timeslices is computed. Any
non-overlapping community detection algorithm could be used in this
step. The LargeNetVis current version employs Louvain [14], a greedy
and agglomerative algorithm based on modularity optimization that
finds the best network partition by establishing groups (communities)
with densely connected nodes. Although modularity optimization faces
the issue of resolution limit, which may lead small and meaningful
communities to be clustered into larger ones [26, 66], Louvain is still
one of the most popular and recommended algorithms [27]. Also, its
computational complexity is linear on the number of edges, which is
an essential advantage in our case. We point the reader to the survey
by Fortunato and Hric [27] for a broader understanding of network
community detection algorithms. Other algorithms (e.g., Infomap [55])
could be incorporated into the system with little effort. Different al-
gorithms would return different communities; the detection quality
directly affects the remaining steps of our workflow and, ultimately, the
visualization and pattern identification.

The system then categorizes each community of each timeslice us-
ing the three taxonomies described in Sec. 2.1 (Structural, Temporal,
and Evolution). Finally, users visually explore the network data under
different perspectives and granularity levels through the four linked
visual components offered by the system (Fig. 3(c)). Respecting the
well-established visual information-seeking mantra “overview first,
zoom and filter, then details-on-demand” [59], these four components
have different roles in the network analysis. Two of them provide an
overview of the network structure and evolution (Sec. 4.2), and two
enable local-level analysis (Sec. 4.3). In addition to the four mentioned
components, the system also shows a useful numerical information
panel with network, community, or node information, depending on the
granularity level of analysis. By default, this panel is named Network
detail panel, and it shows the overall number of nodes, edges, times-

Table 2. Visual components of LargeNetVis and the four tasks.

T1 T2 T3 T4

Taxonomy Matrix ✓ ✓
Global View ✓ ✓ ✓
Node-link diagram ✓
Temporal Activity Map ✓ ✓ ✓

tamps, and communities detected, as well as the mean modularity value
returned by the detection procedure.

4.2 Summary views

Taxonomy Matrix. This view summarizes the general network struc-
ture, temporal distribution, and evolution by showing the number of
communities that correspond to each combination of categories from
the two user-selected taxonomies (tasks T2, T3). Users can freely com-
bine taxonomies two-by-two, including a taxonomy with itself — in this
case, the main diagonal would show how the network is characterized
according to that taxonomy alone. Fig. 4(a) illustrates this view: in
the example, three communities are Cliques (structural taxonomy) and
Sporadic and Grouped (temporal taxonomy).

Once the user has chosen two taxonomies for analysis, he/she can
select a particular category combination of interest by clicking on
its corresponding matrix cell. It is also possible to select multiple
combinations, a row or a column, and even the whole matrix (by
clicking on the top-left cell).

An alternative that we have considered for this view would be the
adoption of bar charts depicting the number of communities that meet
each category combination. The high number of possible combinations
(there would be 30 bars when considering structural and evolution
taxonomies), allied to the fact that the bar chart would emphasize the
most frequent combinations while one may be interested in analyzing
the less frequent ones, led us to adopt the described Taxonomy Matrix.

Global View. The communities that belong to the selected cell(s) in
the Taxonomy Matrix are highlighted in Global View, a view focused
on the community evolution behavior (Fig. 4(b)). This way, users
can locate communities with characteristics of interest (T2) and the
timeslices they occur (T1), and also know the type of temporal changes
affecting them (T3). Global View can be thought of as a grid where
columns represent timeslices and rows represent communities, which
are depicted as circles with varying colors and sizes, visual attributes
that can map information of interest (for example, the community size
or average node degree). The current version of LargeNetVis adopts
redundant coding [73], mapping the community size on both color and
circle’s size (Fig. 4(b)).

As illustrated in Fig. 4(b), Global View enables analyses that rely on
the temporal distribution of communities, including the identification
of idle periods (see timeslice #4) and periods with many or few com-
munities (compare timeslices #1 and #3, for instance). The evolution-
ary behaviors are visually represented as links with varying thickness
between a “from” community (timeslice #X) and a “to” community
(timeslice #(X+1)). The design of the links enables quick identification
of splits and merges (Fig. 4(b-I)), growth and contraction (Fig. 4(b-II)),
and preservation (Fig. 4(b-III)), which occurs when the number of
nodes in a community does not change (T3). Linking communities
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Fig. 4. Visual components of LargeNetVis that enable global analysis:
(a) Taxonomy Matrix; (b) Global View. The evolutionary behaviors are:
(I) split/merge; (II) grow/contract; and (III) preserve.

from different timeslices improves mental map preservation.

To avoid long links and overlaps, LargeNetVis implements a simple
but efficient strategy that minimizes the link length. For the first times-
lice (grid column), communities are positioned following the order they
appear, i.e., the order they are returned by the community detection
algorithm. For each remaining timeslice, we position “to” communities
such that the Euclidean distance between them and their corresponding
“from” communities is minimized; communities not linked so far go to
the remaining positions in the order they appear. In the end, we obtain
minimal lengths for all links but merge-related diagonals (cases where
there are two “from” for a single “to”). To solve these cases, the “from”
community that is far from its “to” (diagonal link) switches places with
the non-linked community closest to the other “from”. We provide the
algorithm in the supp. material (Sec. A). Note that other positioning
strategies could have been adopted. The impact of different strategies
in the layout is discussed in Sec. 7.

Users can zoom in/out and pan to explore particular regions of
interest. When a circle is hovered over, the system shows a tooltip
informing the timeslice number, the number of nodes in that community,
the community position in the grid, and the three taxonomy categories
that characterize that community (see Fig. 1(F)). When a link is hovered
over, it is shown a tooltip with information about the communities and
timeslices involved, the communities’ sizes, and the type of event. Once
the user has found a community of interest to analyze, he/she clicks on
the corresponding circle and is redirected to the remaining two views
(node-link diagram and Temporal Activity Map – TAM), which will
be described in the next section. Details of the clicked community,
including its number of nodes, edges, and timestamps with edges, are
also shown in the numerical information panel, which is now referred
to as Community detail panel (see Fig. 1(E)). If the user clicks on a
circle that refers to a community categorized differently from those
selected in the Taxonomy Matrix, the matrix cell representing this new
community is automatically selected and the previously selected cells
are deselected. Consequently, all communities in Global View that fit
the newly selected categorization become highlighted (and only them).
With this functionality, we help users to find communities that share
the same properties as the ones they consider interesting. Note also
that Global View enables exploratory visual analysis, i.e., users can go
directly to this view without exploring Taxonomy Matrix first.

We have considered alternative design choices for Global View.
First, we adopted a timeline-based approach instead of an animation
because timelines are better for tasks involving more than two time
steps [12], an important advantage for identifying active/inactive time
intervals (e.g., days and nights) (T1) and tracking a community of inter-
est throughout the observation period (T2). After this decision, we con-
sidered the adoption of traditional alluvial (or Sankey) diagrams for this
view. We discarded them after preliminary tests due to the amount of
screen space they require for networks with many timeslices or commu-
nities per timeslice. Inspired by visualizations employed for node-level
analysis [67, 68], we created a compact representation that uses circles
over time to indicate community activity and evolution. We also de-
cided to map the community size using redundant code (circle’s size and
color) to enhance the identification of small/large communities (T2).
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Fig. 5. Visual components of LargeNetVis that enable local analysis: (a)
(Super)node-link diagram; (b) Node-link diagram; (c) TAM.

4.3 Local views

Node-link diagram. After finding a community of interest, users
may want to analyze it from a more detailed perspective, e.g., looking
for intra-community nodes that share common properties (e.g., same
metadata) or studying a node’s interaction dynamics. LargeNetVis
enables local-level analyses of these types (T2) through the traditional
node-link diagram and a TAM [44]. Both views are simultaneously
loaded when the user clicks on a circle in Global View.

Our node-link diagram, illustrated in Fig. 5(b), shows the intra-
community nodes and edges in an aggregated fashion, i.e., by showing
all of them at once regardless of the times of the edges. If categorical
node metadata is provided (e.g., student’s class or employee’s depart-
ment), the system enhances the analysis by associating different colors
to nodes with different metadata values. Users are free to change any
default color by using a color picker. The node positioning is defined
such that nodes more frequently connected are close to each other
(spring-force algorithm [15]) and edge bundling is optionally applied
to reduce clutter [34]. The impact of different positioning methods
is discussed in Sec. 7. As occurs with Global View, users can zoom
in, zoom out and pan for more detailed analysis or manual node repo-
sitioning. When a node (circle) is hovered over, the system shows a
tooltip informing the node id and its metadata value (if any). If a circle
is clicked, the corresponding node is highlighted in TAM (described
below) and the numerical information panel (now named Node detail
panel) exhibits this node’s id, metadata value, normalized degree value,
approximated and normalized betweenness centrality value (using 25%
of the nodes for computation), and closeness value. These centrality
values are computed for the timeslice under analysis.

To enhance the analysis of large communities, the system also offers
a multilevel node-link diagram for those communities with more than
a user-defined number of nodes. In these cases, LargeNetVis shows,
by default, a summarized representation where nodes (referred to as
“supernodes”) represent sub-communities and “superedges” indicate
the presence of inter-sub-community edges (Fig. 5(a)). The algorithms
used for “supernode” positioning and sub-community detection [43]
are the same as before (spring-force and Louvain, respectively). The
color and size of a “supernode” (circle) map the predominant color
among the sub-community’s nodes and the number of nodes inside it,
respectively. The “superedge” thickness maps the number of inter-sub-
community edges between the two involved “supernodes”. Users can
freely navigate between summarized and non-summarized node-link
diagrams. When a “supernode” is clicked, its nodes are highlighted in
both non-summarized diagram and TAM.

We performed preliminary tests to compare our node-link diagram
with an alternative approach (the adjacency matrix visualization [13]).
We chose the node-link diagram as it was easier to visualize the inherent
structure of the communities (T2) using the diagram than with the
matrix (recall Fig. 2(a-e)).
Temporal Activity Map. Besides the well-established node-link di-
agram, LargeNetVis includes the Temporal Activity Map (TAM), a
layout successfully used for the visual exploration of networks from
different domains [44]. TAM is a timeline-based visualization strategy
focused on showing active nodes (i.e., connected to others) over time.
The vertical and horizontal axes represent the nodes and timestamps,
respectively, and a colored square is drawn whenever the corresponding
node is active in the network. The edges are hidden in this layout. Our
system exhibits TAM at the same time as the node-link diagram and
uses the same colors for node metadata (T2). For coherence, colors



changed through the mentioned color picker are also reflected in this
layout. As illustrated in Fig. 5(c), active nodes are represented by
fixed-size squares that form “blocks” in the visualization that enable
the identification of patterns related to active/inactive nodes and groups
over time as well as intervals with or without activity (T1, T4). Some
examples of patterns are shown in Fig. 5(c): the presence of a node
active in several consecutive timestamps (Fig. 5(c-I)), absence of all
nodes with label “B” in a particular timestamp (Fig. 5(c-II)), and all
nodes of the network active in the last two timestamps (Fig. 5(c-III)).

In our case, LargeNetVis provides the TAM layout for the commu-
nity being analyzed and also shows a line chart depicting the number of
edges per timestamp in that community. Nodes are positioned accord-
ing to their metadata, and nodes with the same metadata are positioned
in the order they appear. We discuss the impact of using other strategies
for node positioning in Sec. 7. When a square is hovered over in TAM,
the system shows a tooltip with the respective timestamp, the node id,
and node metadata. By clicking on a square, the corresponding node
is highlighted in the node-link diagram. We studied some alternatives
before adopting TAM, for example, the use of an animated node-link
diagram instead of a static node-link diagram associated with the TAM.
We chose the second option because timeline-based approaches are
preferable for analysis that depend on more than two timestamps [12],
for example during peak or valley analysis (T4).

4.4 Scalability

Some procedures in the system’s workflow make LargeNetVis suitable
for exploring large networks. First, node/edge sampling methods may
be used as an initial attempt to reduce network data (Fig. 3(a)). Second,
LargeNetVis detects communities throughout time and focuses on them
(i.e., on their nodes and edges) to guide users to regions of interest in the
network (Fig. 3(b)). Although this guidance is helpful when exploring
large networks, the number of interesting communities may remain too
large and additional guidance may be required; LargeNetVis efficiently
addresses these cases by also providing community categorization
(Fig. 3(b)). A potential side effect of focusing on the community
structure is the discarding of inter-community edges and the consequent
impact on the study of the overall structure and evolution of the whole
network. Following previous work [43], we consider this acceptable
since inter-community edges are not as frequent as the intra-community
ones [27] and nodes connected by them would create groups not as
meaningful as the actual communities.

To attenuate visual scalability issues in Global View depending on
the number of timeslices being used and communities detected, a de-
fault zoom-to-fit is employed, so the representation of the smallest
communities is reduced to a few pixels in the worst-case scenario.
Further efforts include from zoom-in/out, pan, and scrolling, to the se-
lection of communities from categories of interest using the Taxonomy
Matrix and the filtering of communities with a minimum desired num-
ber of nodes. Using a temporal network with 50,514 nodes and 108,132
edges (Twitter network [48]), supp. material (Sec. B) shows a case
where Global View contains 2,033 communities and 100 timeslices.

The visual exploration of a community of interest (Fig. 3(c)) may
also be impaired depending on its number of nodes and edges. To
attenuate this scalability issue, besides spring-force node positioning
and edge bundling, LargeNetVis shows by default a summarized node-
link diagram when the number of nodes in the community is higher
than a user-defined threshold (Sec. 4.3). In our supplemental material
(Sec. B), we show an example of a summarized representation of a
community with 3,886 nodes and 5,035 edges. Free navigation between
summarized and non-summarized diagrams is allowed and both views
are coordinated between themselves and with TAM, thus optimizing
the process of finding and analyzing nodes (or groups) of interest in
all views. Finally, we have also analyzed the computational scalability
of LargeNetVis by (i) collecting user feedback regarding the overall
system’s response time, and (ii) measuring the running times of the
network manipulation procedures (Fig. 3(b)) for all networks and con-
figurations discussed throughout Sections 5 and 6. LargeNetVis is fast
and its response time was well-received by our user study participants.
We will provide details about this analysis in Sec. 6.5.

4.5 Implementation
LargeNetVis was built with a client-server architecture and is available
at https://github.com/claudiodgl/LargeNetVis. All views
were implemented using Javascript and the D3 library [21]. The server
side uses Python and employs some popular frameworks and libraries,
such as Flask [30], NetworkX [47], and others.

5 USAGE SCENARIOS

We present two usage scenarios to show the LargeNetVis capabilities.

5.1 MovieLens network
The network we consider in this usage scenario (MovieLens net-
work) was built from the MovieLens 1M dataset [32, 74], which
contains data gathered from the same-name rating website (https:
//movielens.org/). The network is composed of 9,940 nodes (3,900
users and 6,040 movies) and 1,000,209 edges (movie ratings on a 5-star
scale) distributed in 1038 timestamps (days). It is a bipartite network
where edges are defined as “users rating movies”. We consider this
network large because of its number of nodes and timestamps. Re-
gardless of the number of timeslices tested in our experiments, all
communities detected are born and die during the same timeslice (T3).
The evolutionary behaviors growth/contraction and merge/split were
not identified. We believe this occurs because there is probably no user
rating the same movies more than once.

As stated in Sec. 4.2, LargeNetVis allows users to freely explore
communities directly from Global View, a resource that may lead to
new insights and unexpected pattern discovery. The presented usage
scenario begins with such an exploratory analysis (Fig. 1). We first
filtered the MovieLens network to consider only negative ratings (i.e.,
with 1 or 2 stars, out of 5) for the top-6 most rated movie genres
(action, comedy, documentary, drama, horror, thriller). Our focus was
on those movies that belong to a single category among the mentioned
ones, which resulted in 6,358 nodes and 47,809 edges distributed in
1,002 timestamps. Then, we adopted 10 timeslices to represent this
observation period (value empirically chosen among the suggested
range) and discarded communities with less than 5 nodes.

With this network configuration, we quickly identified on Global
View a timeslice (#7) with more communities than the others (T1). This
timeslice has 10 more communities than the timeslices with the least
number of communities (#2 and #3, see Fig. 1(B)) and one more than
the timeslices containing the second-highest number of communities
(#4 and #5). We then became interested in exploring this additional
community from timeslice #7 (Fig. 1(F)). We clicked on this commu-
nity’s circle on Global View and the system informed us, through the
Taxonomy Matrix cell highlighting, that this community is categorized
as star and sporadic/dispersed, characteristics that represent 13 com-
munities in the network (see Fig. 1(A)) (T2). We also noticed that this
community contains an equal number of nodes and edges (33), and
only 3% of its timestamps have activity (Fig. 1(E)).

Moving further from global to local analysis, LargeNetVis shows
the node-link diagram and TAM for any community selected on Global
View. As we see in the node-link diagram from Fig. 1(C), our com-
munity of interest is composed of two individuals that rated several
movies negatively. While one of these individuals rated movies from
different genres (person P1), another rated only comedies (person P2).
Note also that two movies were rated by both of them: House Arrest
(1996) and Life with Mikey (1993). By looking at the TAM layout, we
see another behavior shared by both individuals: except for two movies
rated by P1 some days later (a drama and a comedy), each individual
took only one day to rate all movies (Fig. 1(D)) (T1,T4).

Fig. 1(C) illustrates a scenario where a single individual rates several
movies; however, the inverse is also possible. By focusing the analysis
on drama movies that were positively rated (i.e., with 4 or 5 stars, out
of 5) and considering again 10 timeslices and communities with at least
5 nodes, we end up having 5,875 nodes and 72,695 edges distributed
in 1,038 timestamps (days). The network under this configuration has
only 1 community categorized as star and continuous/dispersed, which
attracted our attention when looking at the Taxonomy Matrix (Fig. 6(a))
(T2). This community has 112 nodes (9 movies and 103 users) and

https://github.com/claudiodgl/LargeNetVis
https://movielens.org/
https://movielens.org/


Drama Male Female

(a) (b)

M1

M2

Tree

Star

Circular

Low

Clique

Spor/Disp Spor/Group Cont/Disp Cont/Group

58

24 1

1

30

1

1

Fig. 6. The only star and continuous/dispersed community when con-
sidering drama movies positively rated. It was found thanks to the Tax.
Matrix (a) and depicts two movies M1 and M2 rated by several people (b).

contains two movies that were positively rated by a lot of people, mainly
by males (Fig. 6(b)). The most rated one (M1) is One Flew Over the
Cuckoo’s Nest (1975), winner of 5 Oscars and top-rated movie #18 of
all times on IMDb1; the second movie (M2) is The Hurricane (1999),
nominated for an Oscar in 20002.

5.2 Primary School network
The Primary School network [29] is composed of interactions recorded
during two days between students and teachers of a primary school in
Lyon, France. There are 242 nodes and 125,773 edges distributed in
5,846 timestamps (each comprising a 20-sec interval). The network
considers five school grades (first to fifth) and two classes (A and B)
per grade, in a total of 10 classes. Each class has an assigned teacher.
We consider this network a large one due to its number of timestamps.

By adopting 26 timeslices and communities with at least three nodes
to analyze this network, we see that most communities are categorized
as clique by the structural taxonomy (100 of 116) and that there are
no stars in the network (Fig. 7, Tax. Matrix). Besides, there are 12
continuous/grouped communities while sporadic/grouped is the less
observed temporal categorization, with only one community (T2). Note
that the presence of communities with these characteristics is the oppo-
site of what we observed in the MovieLens network (Fig. 1(A)), where
there are no continuous/grouped communities or cliques (MovieLens
is bipartite, after all).

When analyzing the first day of school (timeslices #1 to #7) using
Global View, we see at least one growth (Fig. 7(I)), one contraction
(Fig. 7(II)), and two merges (Fig. 7(III-IV)) involving some of the 68
clique and continuous/dispersed communities (T1, T2, T3). As shown
in Fig. 7, these four events occur between communities that represent
same-grade classes (e.g., IV is a merge between classes 3A (purple) and
3B (brown)). This is expected since same-grade students interact more
often among themselves than with students from other grades [29].
Finally, the merged community from IV is highly active over time
except for a small time interval (T4) (see TAM in Fig. 7), a behavior
that does not occur as frequently in MovieLens as in this network (recall
Fig. 1(D)). This discrepancy may explain why the Primary School have
most communities with continuous activity while MovieLens have
most communities having sporadic activity (compare the Taxonomy
Matrices from Fig. 7 and Fig. 1(A)).

6 USER STUDY

We also performed a user evaluation to collect feedback about the
system’s usefulness and usability, and ideas for improvement.

6.1 Network data sets
The participants of the user study employed LargeNetVis to analyze
two different networks. The first one is the Primary School network pre-
sented in Sec. 5.2. The second network, Sexual contacts [52], describes
sexual encounters between sex-workers (sellers) and clients (buyers).
This network is composed of 12,157 nodes, 34,060 edges, and 1,000
timestamps (each timestamp comprises a 1-day interval). We consider
it a large network mainly because of its number of nodes.

1https://www.imdb.com/title/tt0073486/. Accessed: 2022-03-22.
2https://www.imdb.com/title/tt0174856/. Accessed: 2022-03-22.
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diagram is shown.

6.2 Procedure

Our study was conducted both online and remotely, with each partici-
pant answering the questions at different times and using their personal
computers, so we did not have any control over the environment of the
study. We provided each participant with a video containing instruc-
tions about the system’s basic concepts and functionalities. The video
was 7 minutes long and continuously available during the experiment.

6.3 Online questionnaire

The questionnaire was written in Brazilian Portuguese, in which all
participants were fluent. We divided the questions in (i) background and
experience; (ii) four basic questions to test the user’s comprehension;
(iii) six advanced questions using both networks (two multiple-choice
and four open questions); (iv) Likert-scale-based questions to evaluate
the user preference of the system, along with open questions to justify
their choices; and (v) a mix of multiple-choice and open questions to
collect the users’ feedback about the system. The complete description
of the questions and expected answers are available in the supplemental
material (Sec. C). This questionnaire structure was based on similar
user studies evaluating layouts or systems [8, 65].

The questions were divided aimed at evaluating the functionali-
ties, layouts, and perceptions of the participants under different tasks.
First, we assessed the comprehension of the basic functionalities of
LargeNetVis using four basic multiple-choice questions about the Pri-
mary School (B1 – B4). Then, we asked the participants to re-open the
network under a different configuration (timeslices and filters), which
led to different layouts used to answer the first three advanced questions
(A1 – A3), composed of one multiple-choice and two open questions.
Finally, the last three questions (A4 – A6, one multiple-choice and
two open questions) are related to the Sexual contacts network. In
the advanced questions, the first open question for each network (A1
and A4) was focused on guiding the participants to specific patterns,
and the last questions (A3 and A6) encouraged them to perform a free
exploration of the system.

6.4 Participants

The experiment recruited 14 participants, which participated voluntarily
in the experiment. They are professors, postdocs, and graduate students
with a background in Computer Science. We asked about their previous
experience working in the Visualization and Network science fields:
most have published articles or advised students in at least one of the
fields. One participant also has extensive experience working with
visualization in a number of international companies. We also asked if

https://www.imdb.com/title/tt0073486/
https://www.imdb.com/title/tt0174856/


they were aware of any visual difficulties, such as color blindness, but
no one indicated limitations. They had no access to our usage scenarios.

6.5 Results

Participants’ background. We divided the participants into non-
overlapping groups based on their self-description of experience using
a scale with None, Basic, Intermediate, and Advanced knowledge
for each field (Visualization and Network science). We considered a
participant as a Specialist if he/she has advanced knowledge in both
fields (we have 3 specialists). If he/she has advanced knowledge in only
one field, we included him/her in the Advanced group (3 individuals).
Participants with an intermediate knowledge in at least one of the two
fields were included in the Intermediate group (8 individuals). These
three groups were sufficient to categorize all 14 participants.

The participants spent 50m34s on average to answer the question-
naire and perform exploratory analyses. Considering the analyzed
groups, the time spent answering the questionnaire increased based on
the experience, with specialists spending almost one hour. We assume
that participants with more knowledge of the fields spent more time
assessing technical aspects of the layouts and analyzing their findings.
Questionnaire answers. All participants answered the four basic ques-
tions (B1 – B4) correctly. Two of our advanced multi-choice questions
(A2 and A5) aimed at validating the layouts. In question A2 (about
Global View), we provided a 5-Likert scale asking the participants their
agreement level on the ease of identifying communities that merge,
with all participants providing positive answers (43% agreed and 57%
strongly agreed). In question A5 (about the node-link diagram and
TAM), they had to describe the structural pattern and temporal distri-
bution of a particular community. All participants marked the correct
answer. Having all correct answers to our multi-choice questions, we
validated that the participants understood and correctly performed the
intended tasks for all considered networks and configurations.

The open questions A1, A3, A4, and A6 were formulated to enable
exploratory tasks. Questions A1 and A4 (one from each network) were
designed to guide the participants in exploring specific patterns. A1
asked participants to indicate communities that suggest the occurrence
of a lunch break in the primary school; we obtained 92% of correct
answers. Question A4 asked the participants to explore a given commu-
nity using both the node-link diagram and TAM, and describe eventual
patterns found. Again, 92% of the participants indicated the expected
answer, which was the relationship between one seller and several
buyers, with connections spread over time.

Questions A3 and A6 asked participants to freely explore the layouts
from both networks and describe relevant patterns eventually found,
which should be different from those described in other questions. In
this case, the participants were free to write their personal findings. Our
objective with these questions was not to evaluate correct or wrong
answers, but to understand the overall perception of the users with the
visualizations and the system’s capability of enabling pattern identifica-
tion. In question A3 (about the primary school), 72% of the participants
answered that they could identify at least one pattern not previously
described in other questions. One pattern mentioned by 30% of par-
ticipants refers to the presence of the biggest network community on
the second day of the network. This community comprises connections
among students from six different grades and three teachers, which
was very unusual for this network. We discuss this and other patterns
mentioned by the participants in the supplemental material (Sec. D).

In question A6 (about the Sexual contacts network), 57% of the par-
ticipants answered they could identify at least one pattern not previously
described in other questions. The majority of the answers were related
to the rarity of a seller’s relationship with multiple buyers, for cases of
small (Fig. 8(a-b)) and large communities (Fig. 8(c)). Also, one partici-
pant extended this analysis (Fig. 8(b)) by highlighting an interesting
pattern in the TAM layout which shows that most encounters are 1-1
except for one involving 3 individuals on the same day. A participant
also pointed out that “the proportion of star-type communities is much
smaller than tree and circular, where inadequate protection can cause
the spread of sexually transmitted infections”. About the Tree type of
structural pattern (Fig. 8(d)), a participant highlighted that “many large
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Fig. 8. Sexual contacts: some patterns identified through question A6.

communities are of the Tree type structure, which shows that they are
communities formed with few connections, in which a buyer can buy
from multiple sellers, but there won’t be many other buyers buying from
these same sellers”. This participant’s observation is in agreement with
this network’s Assortativity value, which indicates a tendency of active
buyers interact with less active sellers and vice-versa [52].

LargeNetVis performance. We used two 5-point Likert-scale ques-
tionnaires to measure the participants’ preferences about LargeNetVis
and specifically about each layout used (Fig. 9(a,b)). We evaluated four
main aspects of the system: whether the system offers visual scalability
(i.e., whether it worked well for both networks) (LQ1), is fast (LQ2),
is useful (LQ3), and is intuitive and easy to use (LQ4). Regarding
LQ1, three participants (two with intermediate and one with advanced
experiences) were not sure about the system’s capability on this matter
(Fig. 9(a), LQ1). The major concern was that the system was not tested
using networks with 1 million nodes or so. In contrast, the specialists
and other participants positively evaluated the system, indicating “a
good balance between the number of elements in global and local
views”, and also that “it was possible to understand relationships in
the same way in both networks”.

The other three aspects (Fig. 9(a), LQ2 – LQ4) were positively
evaluated by all participants. Some interesting aspects highlighted
by the participants about LQ2 were that “responses to commands are
immediate and instantaneous” and “the interaction worked very fast,
it just took a while to load the sexual network at first”. To obtain a
quantitative assessment, we also measured the average running times
for the workflow procedures depicted in Fig. 3(b), and we show our
results in the supp. material (Sec. E). The system spent a maximum of
12.66 sec. to run all of these procedures for any network and number
of timeslices discussed throughout our usage scenarios and user study.
Both the user feedback and quantitative evaluation demonstrate the well-
received response time and computational scalability of LargeNetVis.

Regarding the system’s usefulness (Fig. 9(a), LQ3), participants
claimed that the system “is very useful for dealing with unknown data in
an exploration stage, such as observing the behavior of temporal data”,
and “this type of tool is vital for analyzing the evolution of communi-
ties in a temporal network”. Regarding intuitiveness and ease of use
(Fig. 9(a), LQ4), participants argued that “it is easy to use based on the
graphical interface proposed and is quite intuitive for those who know
networks or graphs” and “I found it simple to use, being easy to switch
between instants of time and follow the changes in relationships”.

Feedback on individual layouts. Fig. 9(b) shows the participants’
assessments of the quality of each layout, more specifically on whether
the layout is useful and helped in the network analysis. The first
evaluated layout was the Taxonomy Matrix, the only one to receive
negative reviews. The critique of the two participants in this case was
that they did not use this layout since the taxonomy information was
also available under interaction in the tooltips shown in Global View.
TAM also received two neutral assessments, justified by the participants
who affirmed that “to completely understand TAM it is necessary to
have a better knowledge of the network”, and that “TAM needs better
interaction techniques, such as the selection of a node in the node-
link diagram and its automatic selection in the TAM layout”. We
implemented this feature after the user study. Besides those neutral and
negative assessments, participants considered that “the integration of
all layouts facilitated the analysis and each brought a different aspect of
the network being analyzed”. Another participant even complemented
this idea by explaining that “the Taxonomy Matrix allows a quick
interpretation of communities, the node-link diagram is very useful
to analyze the cases separately, and TAM adds the missing temporal
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Fig. 9. Participants’ answers related to (a) LargeNetVis and (b) individual
layouts. The bar length is the percentage of respondents who chose
a specific Likert level. Questions from (a) concern the system’s visual
scalability (LQ1), speed (LQ2), usefulness (LQ3), and intuitiveness and
ease of use (LQ4). Questions from (b) concern whether each layout is
useful and helps in the network analysis.

information”. Overall, the participants preferred Global View and the
node-link diagram over the others.

Among the participants, 28% mentioned other systems that allow
similar analysis, such as Gephi, Graphviz, Stanford Network Analysis
Platform (SNAP), and Python libraries (e.g., NetworkX). According
to them, LargeNetVis is preferred because “it is already a specific and
ready-to-use tool for network analysis”, “it doesn’t mess up the graphs
as much and it is more intuitive and easy to use” and “it is a low-code
tool; users only need to format their input data and the visualization is
ready to use”. On the other hand, disadvantages of our system include

“the lack of flexibility in positioning views and exporting filtered data”
and “it could be possible to use the views as part of other systems”.

We also asked the participants to evaluate the efficiency of the three
taxonomies. In general, participants had very positive answers, claim-
ing that “the taxonomies provide more objectively analyses, working
as a filter of the network” and also citing an example: “if I am inter-
ested in a certain structure, I discard the others and optimize time and
efforts”. A participant argued that the Taxonomy Matrix “shows to the
user the pre-extracted and already categorized patterns, allowing less
experienced users to analyze the data more directly and easily”.
Suggestions for improvement. Some participants suggested imple-
menting edge weights to work with weighted networks, selecting multi-
ple items in the layouts, improving the interaction between the node-link
diagram and TAM (implemented after the user study), and others. The
previous version of the system only exhibited network-level numeri-
cal information, and the most interesting suggestion we received in
that sense was to optimize the numerical information panel by chang-
ing its information according to the granularity of analysis (network,
community, or node-level information).

7 DISCUSSION AND LIMITATIONS

Although LargeNetVis is a useful tool for exploring large temporal net-
works, some aspects may affect the analysis and pattern identification.
Number of nodes, edges, and timestamps. Exploring networks with
more than a few thousand nodes and timestamps (i.e., very large net-
works) could lead to a number of communities (or sizes) so elevated
that the analysis would be impaired even considering LargeNetVis’s
current capabilities (e.g., the multilevel node-link diagram). We believe
LargeNetVis is a encouraging first step towards the analysis of such
very large networks, and we now intend to extend the system by incor-
porating more sophisticated filters (e.g., based on centrality values) and
multilevel approaches in the other views (TAM and Global View).
Node and community positioning. As studied by previous work [15,
43, 44, 68], node positioning strongly affects overlaps, visual clutter,
and pattern identification. As an example, identifying merges in Global
View or interesting groups of nodes in the node-link diagram and TAM
would be easier or harder depending on the adopted positioning. Even
though the positioning algorithms already incorporated into the system
have been sufficient for the tested cases, we now intend to include more
sophisticated algorithms, e.g., Community-based node ordering [43]
for TAM and ad-hoc solutions specific for each type of structure.
Multiple categorizations of the same community. LargeNetVis’s
current version associates each community with a single category of

the structural taxonomy. In real-world networks, however, the same
community may contain more than one type of structure. One such
example is the community shown in Fig. 8(c), which contains both star
and tree. We now intend to adapt the system to consider these cases.

Network characteristics. Some taxonomies’ categories may not be
perceived depending on the network characteristics and dynamics. One
such example is the absence of cliques in the bipartite network Movie-
Lens (Sec. 5.1), a type of community that would also not be identified
in unipartite networks with low number of triangles. We have evalu-
ated LargeNetVis using both unipartite and bipartite networks to show
its usefulness for analyzing networks with different characteristics.
LargeNetVis is designed for networks with discrete timestamps, for
which timeslicing strategies are suitable [62]. Also, the system adopts
uniform (equally distributed) timeslices instead of non-uniform and
data driven ones. In future work, we intend to investigate whether data
driven timeslices would improve our results.

Information loss. LargeNetVis offers a set of sampling methods that
can be used to discard nodes and edges from the analysis. It also fo-
cuses on the network communities, discarding inter-community edges
and making it infeasible the analysis of the overall structure and evo-
lution of the whole network (recall Sec. 4.4). Although evaluating the
performance of sampling methods is outside the scope of our study,
we now intend to measure how much information is lost — and how
relevant they are — when inter-community edges are ignored.

Visual Improvements. Based on reviewers’ comments and partici-
pants’ feedback, we added some new features to the system after the
user study (adaptive numerical information panel, varying link thick-
ness in Global View, multilevel node-link diagram, edge bundling, and
coordination between node-link and TAM). These features were not
used by the participants and did not directly affect the reported results.
We now intend to improve multiple community selections in Global
View and thoroughly evaluate all these new features.

8 CONCLUSION

In this paper, we presented LargeNetVis, a web-based visual analytics
system that assists experts and practitioners in analyzing small and
large temporal networks, i.e., networks varying from a few nodes and
timestamps to a few thousand of these elements. LargeNetVis enhances
the analysis and pattern identification by leveraging the network com-
munity structure and three taxonomies, each accounting for a particular
and relevant type of pattern (structural, temporal, and evolutionary).
Given a temporal network and its node metadata, the system first di-
vides the network into timeslices of equal length. Then, it detects
network communities inside each timeslice. These communities are
then categorized using three taxonomies from the literature. Finally,
users can explore communities with characteristics of interest and their
nodes and edges through the four linked views offered by the system,
two focused on global level analysis and two focused on a local level.
We validated LargeNetVis’s usefulness and effectiveness through two
usage scenarios and a user study with 14 participants.
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