Data Mining and Knowledge Discovery
https://doi.org/10.1007/510618-022-00906-4

n

Check for
updates

Mining Pareto-optimal counterfactual antecedents with a
branch-and-bound model-agnostic algorithm

Marcos M. Raimundo’2@® - Luis Gustavo Nonato3* - Jorge Poco'®

Received: 21 May 2021 / Accepted: 1 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract

Mining counterfactual antecedents became a valuable tool to discover knowledge and
explain machine learning models. It consists of generating synthetic samples from an
original sample to achieve the desired outcome in a machine learning model, thus help-
ing to understand the prediction. An insightful methodology would explore a broader
set of counterfactual antecedents to reveal multiple possibilities while operating on
any classifier. Therefore, we create a tree-based search that requires monotonicity
from the objective functions (a.k.a. cost functions); it allows pruning branches that
will not improve the objective functions. Since monotonicity is only required for the
objective function, this method can be used for any family of classifiers (e.g., linear
models, neural networks, and decision trees). However, additional classifier proper-
ties speed up the tree search when it foresees branches that will not result in feasible
actions. Moreover, the proposed optimization generates a diverse set of Pareto-optimal
counterfactual antecedents by relying on multi-objective concepts. The results show
an algorithm with working guarantees that enumerates a wide range of counterfactual
antecedents. It helps the decision-maker understand the machine learning decision and
finds alternatives to achieve the desired outcome. The user can inspect these multi-

Responsible editor: Martin Atzmueller, Johannes Fiirnkranz, Tomas Kliegr and Ute Schmid.

B Marcos M. Raimundo
mraimundo @ic.unicamp.br

Luis Gustavo Nonato
gnonato@icmc.usp.br

Jorge Poco

jorge.poco@fgv.br

Fundagdo Getiilio Vargas, Rio de Janeiro, Brazil
University of Campinas, Campinas, Brazil

3 ICMC-USP, Séo Carlos, Brazil

4 New York University, New York, USA

Universidad Catdlica San Pablo, Arequipa, Peru

Published online: 16 December 2022 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-022-00906-4&domain=pdf
http://orcid.org/0000-0003-0499-2564

M. M. Raimundo et al.

ple counterfactual antecedents to find the most suitable one and better understand the
prediction.

Keywords Explainability - Interpretability - Machine learning - Knowledge mining -
Multi-objective optimization - Crime data - Counterfactual

1 Introduction

Given a sample with an undesired outcome from a machine learning model, a coun-
terfactual antecedent is a synthetic sample that achieves the desired outcome with
minimal changes compared to the original sample. It helps explain the prediction
of such a sample by observing what could be changed to achieve another outcome.
For instance, let us suppose that a person is diagnosed with a high risk of diabetes
by a machine learning technique. The attributes involved in the decision include an
Insulin level of 285, BMI (Body Mass Index) of 44, BloodPreassure of 80,
Skin Thickness of34,and Glucoselevel of 114. A counterfactual antecedent
mining system would suggest some counterfactual antecedents to swap the outcome
from high to low risk.—e.g., this person should decrease his/her BMI from 44 to 36
or decrease Glucose level from 114 to 99. Counterfactual mining is also known
by other names such as Actionable knowledge (Yang et al. 2003), Inverse Classifica-
tion (Yang et al. 2012), Counterfactual Explanations (Wachter et al. 2018), and other
variations. People use this technique to recommend medical treatments (Yang et al.
2012; Krause et al. 2016), marketing strategies to retain customers (Yang et al. 2003),
and personal profile changes to have credit approved (Ustun et al. 2019). Recently,
counterfactual antecedent mining has become popular in explaining the behavior of
learning models (Wachter et al. 2018).

Counterfactual mining methods explore counterfactual antecedent with a sin-
gle (Krause et al. 2016) or multiple (Wachter et al. 2018) feature changes to achieve
the desired outcome. However, the methods capable of finding a diverse set of counter-
factual antecedents (Karimi et al. 2020; Ustun et al. 2019; Mothilal et al. 2020) rely on
a single objective function. Although this function should capture the cost of making
changes to create a counterfactual antecedent, it is hard to design a single objective
function that fulfills the preferences of a user (Rudin 2019). To clarify the importance
of having multiple counterfactual antecedents, Fig. 1 shows the original sample (see
the Orig column) and a set of counterfactual antecedents (C1, ..., C12 columns) for
a diabetes example. For instance, to change the patient’s model’s outcome from high
to low risk of diabetes:

— C1 suggests increasing Insulin from 285 to 468, decrease BMI from 44 to 42,
and decrease Glucose from 114 to 113.

— C8 suggests increasing ITnsulin from 285 to 468, decrease BMI from 44 to 42,
and decrease SkinThickness from 34 to 24.

— C10 gives another alternative, namely, to increase Insulin from 285 to 416,
decrease BMI from 44 to 42, and decrease SkinThickness from 34 to 12.

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

Feature names Orig C1 C2 C3 C4 C5 C6 C C8 (€9 C10 Cl1 C12
Insulin 285 [468! 520 520 ZES- 520 -4;;6- 468 364
BMI 44 | 42 1 42 42 36 42 42 42
BloodPressure 80 88 88 99 88 88
SkinThickness 34 24 124 112} 12 0
Glucose 114 | 113 113 99

Fig. 1 A multi-objective enumeration of counterfactual antecedents that reduces the risk of diabetes. Orig
column is the original sample and the columns C1 to C12 are counterfactual antecedents

This example shows that it is possible to explore changes in distinct features (C1
vs. C8) and changes in the values of the same features (C8 vs. C10). This diversity is
achievable by using multiple objectives, especially using multi-objective optimization.
Moreover, most existing methods usually operate on a limited family of classification
methods (Ustun et al. 2019; Mothilal et al. 2020); thus, making it unfeasible to use
them with some types of classifiers. Therefore, there is a need for methods to operate
in any family of classifiers (model-agnostic method) and capable of mining a diverse
set of counterfactual antecedents with multiple objectives. Worth mentioning that
counterfactual antecedents in correlation-based machine learning models do not imply
acausal relationship (Chou et al. 2022). Nevertheless, the diversity of options promoted
by the proposed methodology allows experts to explore and find proper counterfactual
antecedents that are the most appropriate for an application domain.

This paper’s main contribution is a methodology called MAPOCAM (Model-
Agnostic Pareto-Optimal Counterfactual Antecedent Mining), which relies on a
tree-based search to enumerate all Pareto-optimal counterfactual antecedents using
a given set of objective functions. The proposed methodology only requires the mono-
tonicity of the objective functions to prune branches that do not improve the solution’s
quality. Moreover, MAPOCAM can also explore optional conditions to improve per-
formance. For example, when the decision function (that evaluates if we achieve the
result) is monotonic (an increase in the value of a feature increases the probability
of achieving the target outcome), the search can be sped up. It happens because it is
possible to foresee branches that take unfeasible actions; thus, they can be pruned.

In summary, the contributions of this work are:

A model agnostic methodology that enumerates all counterfactual antecedents

considering the trade-off of multiple objective functions;

— A mechanism to create an overview of how much the variables need to change to
give rise to counterfactual antecedents;

— A comprehensive set of experiments that explore multiple machine learning
models—Ilogistic regression, decision trees, and neural networks—to validate our
methodology on real applications;

— Anin-depth experiment using urban and social-economic variables to explain how

those variables can be handled to reduce crime incidents.

@ Springer

M. M. Raimundo et al.

2 Related work

Counterfactual antecedent mining is approached in the literature under various names
depending on the application: Actionable knowledge (Cui et al. 2015; Yang et al.
2007; Lv et al. 2018; Lu et al. 2017; Yang et al. 2003), Actionable Plans (Lu et al.
2017), Actionable recourse (Ustun et al. 2019), Actionable feature tweaking (Tolomei
et al. 2017), Inverse Classification (Yang et al. 2012; Aggarwal et al. 2010), Counter-
factual Explanations (Wachter et al. 2018), Why-not questions (Gao et al. 2015; He
and Lo 2012; Chen et al. 2015). The coined name counterfactual antecedent tries to
homogenize those terms. The term counterfactual already explains the nature of the
method. We create an antecedent (distinct from the original sample) that achieves the
consequent (the target outcome, which is fixed).

Actionable knowledge methods (plans/recourse/feature tweaking) usually aim to
mine counterfactual antecedents for specific machine learning models, exploring their
structure to find counterfactual patterns. They usually explore a single counterfactual
antecedent with a single objective function, differing mainly on the optimization proce-
dure. Heuristic approaches typically require an already fitted decision tree or ensemble
of trees and use greedy algorithms to find groups of samples on which actions can
change the outcome (Yang et al. 2003, 2007; Subramani et al. 2016). Heuristics can
also search on every positive path of a decision tree (i.e., changes that result in a swap
of outcomes), searching for positive paths that change the ensemble’s outcome with
the lowest cost (Tolomei et al. 2017). Another heuristic consists of making greedy
moves (i.e., changes that increase the probability) on a KNN classifier (Yang et al.
2012). Other approaches explore counterfactual antecedents with more theoretical
support but still use speed-up heuristics. For instance, some approaches explore A*-
like search to find an optimal change to additive tree models using a heuristic that
considers the probability achieved by the action and the action’s cost (Lu et al. 2017).
Some works use the desired state distance as a heuristic to refine an A*-like search (Lv
etal. 2018). Mixed linear-integer modeling (enforcing optimality guarantees) has also
been employed to swap between leaves of the trees, searching for a feature change
with lower cost (Cui et al. 2015). Those formulations can also search through a set of
actions to find a counterfactual antecedent on linear classifiers (Ustun et al. 2019).

Inverse classification defines a set of features (also interpreted as actions) that
achieves the desired class. An example of inverse classification consists of searching
for a set of feature changes whose correspondent subset of samples has a high Gini
index (Aggarwal et al. 2010). Therefore, the inverse classification does not rely on a
machine learning model; it mines sets of features that achieve the target outcome.

Similarly, the why-not questions approach focuses on determining the absence of
an object in a database query. Knowing a user preference (usually expressed using
a weight vector), a query returns a set of objects. If the user is expecting another
answer, then it can use a quadratic optimization to find a weight vector with the
desired object (Gao et al. 2015); creating a sampling procedure to find new weight
vectors with the desired object (He and Lo 2012); or using a tree-based bound and
prune algorithm (Chen et al. 2015). This family of methods is quite limited since it
only uses a weight vector to classify the samples, similar to linear classifiers.

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

Counterfactual explanations are usually capable of exploring broader families of
machine learning models. Convex optimization can be applied to linear classifiers and
neural networks to find a new outcome that is as close as possible to a new target and
still close enough to the original sample (Wachter et al. 2018), and add constraints to
ensure plausibility (Artelt and Hammer 2020). The method that uses the Nelder-Mead
optimization finds counterfactual antecedent on black-box models with an iterative
approach to determine how close it is to the original sample (Grath et al. 2018). Then
it uses differentiable approximations of tree ensembles to keep the convexity of the
problem (Lucic et al. 2019).

Other approaches include using the density of samples to create a graph and find-
ing a path to a counterfactual that is both feasible and actionable (Poyiadzi et al.
2020). Some methods use binary search to verify the counterfactual antecedent’s sat-
isfiability on a model-agnostic oracle of logic formula’s representation of machine
learning models (Karimi et al. 2020). Generative adversarial net has also been used
to synthesize counterfactual antecedents (Yang et al. 2021). Some techniques rely on
agnostic tree-based searches to find a single counterfactual explanation (Kaffes et al.
2021) via quadratic optimization over the nodes of an oblique decision tree (Hada
and Carreira-Perpifidn 2021). Sampling and clustering the feature space to select the
closest counterfactual antecedent for each cluster is also an alternative (Wellawatte
et al. 2022).

There are also strategies to explore multiple counterfactual antecedents: (i) mixed-
integer model can exclude the combination of features that already find a counterfactual
antecedent (Ustun et al. 2019); (ii) convex optimization searches for finding multiple
solutions at once combined with distance metrics between counterfactual antecedents
to induce diversity (Mothilal et al. 2020); or (iii) iterative approaches that find new
solutions with minimum distance from the already found solution, i.e., using /o larger
than one to have at least one new change (Karimi et al. 2020). The main limitation of
those methods is the use of distances like [y, which does not allow exploring the same
set of features but increasing one and decreasing others. Furthermore, the use of /5 dis-
tance might induce counterfactual antecedents with many features slightly modified.
Changing all features simultaneously is not desired in many applications. In con-
trast, multi-objective optimization allows the creation of diversity without relying on
a diversity-inducing function. A proper representation of the Pareto-front promoted by
multi-objective optimization will result in solutions with different trade-offs between
objectives (as shown in Fig. 1), thus generating counterfactual antecedents sufficiently
different to promote diversity.

Our method has a set of characteristics not concomitantly present in the methods
described above: (i) it is model-agnostic; (ii) it is capable of exploring multiple objec-
tive functions; and (iii) it is capable of exploring multiple counterfactual antecedents,
properties that are provided by exploring multiple trade-offs by using multi-objective
optimization. Moreover, our approach has solid theoretical guarantees, and it is capa-
ble of dealing with binary features—quality not present in methods that rely on convex
optimization because this type of optimization is not built to deal with integer value
directly.

@ Springer

M. M. Raimundo et al.

T

ci1(a)

|

X

r(a) <7

2 c2(a)
(a) Feature space (b) Objective space

Fig.2 Representation of feature space (a) and objective space (b), taking two features and two objectives.
The blue area represents the space where the samples are classified with the target outcome. In the feature

space (a), the goal is to find a plan a’ that makes x achieve the desired outcome r(x + ai) > 7, thus a

isa feasible action (e.g., al, az, a3,' 35, a6). In the objective space (b), the goal is to exclude all feasible

actions a' that have other actions a’/ with lower (thus better) values of objectives c(ai) > c(a’) (e.g., a2
has higher values than al and a3). The feasible actions with no other feasible action with higher values are
called Pareto-optimal (e.g., al) a3, aé)

3 Proposed method

This section defines the goals and premises of our methodology, a branch-and-bound
algorithm, and details the proposed methodology’s essential properties.

3.1 Background

In the following, we consider a binary classification problem where each sample
comprises a vector of features x € R4, where d is the number of features, and a binary
outcome y € {0, 1}. We represent the classifier by a decision function r(e) that is 1
when r(x) > t and 0 when r(X) < t, where t is given a threshold. For the sake of
simplicity, 1 will be the target outcome.

An action a = [ay,...,aq] on a sample x is a set of changes a¢; € R, Vi €
{1, ..., d} that creates a new synthetic sample x 4 a. Each change a; can be positive
(increase the value of the feature: x; + a; > x;) or negative (decrease the value of the
feature x; 4+ a; < x;), but not both for the same feature. Without losing generality,
we will focus only on non-negative changes a; > 0, Vi € {1, ..., d}' In this context,
a feasible action x + a that achieves the target outcome r(x 4+ a) > t is called a
counterfactual antecedent. Figure 2a illustrates these concepts.

Definition 1 - Feasible action. Anactiona € R? belongs to the feasible set of solutions
A if and only if it achieves the desired outcome r(x + a) > 1.

1" As Ustun et al. (2019) presented, we can apply negative or positive changes, and any of the following
properties would hold. However, we simplify the notation to aid clarity.

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

When an objective function c(e) € R is optimized, it makes an action a better
fulfill the decision-maker’s preferences. We consider, without losing generality, that
we want to minimize an objective function c(e) € R. Thus, we search for actions with
the lowest value of the objective function. But here, we propose using multiple objec-
tive functions cj(e), ..., ¢, () where each objective function c¢;(e), i € {1, ..., m}
account for a specific goal defined by the user. When the objectives are conflicting, it
might be impossible to find a single feasible action with the best performance since
one objective’s optimization might negatively impact others. However, it is possible to
define a partial order in multiple objectives and define a dominant action—an action
with all objectives better than other actions.

Definition 2 - Partial order. Ordering relation on partially ordered sets occurs when
all components are ordered in the same sense. We use the symbols < and > to describe
the ordering relations on partially ordered sets; for example, x < y is equivalent to
xi <y, Vie{l,...,m}

Definition 3 - Dominant action. A feasible action a : r(x + a) > 7 dominates a’ if
and only if ¢(a) < c(a’).

The concept of a dominant action used here is based on the dominance concept
in multi-objective optimization where given two solutions a and a’, a dominates a’
iff c;i(a) < ¢;(a’),Vi € {1,...,m} and exists j such that ¢;(a) < cj(a’) (Miettinen
1999). A feasible action is called Pareto-optimal action when no other feasible action
dominates it. Figure 2b illustrates this concept mathematically defined below.

Definition 4 - Pareto-optimal action (Miettinen 1999). Consider an objective function
vector c(e) : R — R™ that we want to minimize, and a feasible set of solutions .A.
An action a* is Pareto-optimal iff there is no action a € A that dominates a*.

Finally, another important concept in our context is monotonicity.

Definition 5 - Monotonicity w.r.t. a partial order. Given any two actions a, a’ € R?
such that a; > alf, Vi e{l,..., d}, afunction vector f(e) : RY — R™ is monotone
if only if f;(a) > fj(@"), Vj e {l,...,m}.

Monotonicity helps our branch-and-bound (B&B) algorithm to foresee if a search
space is fruitful or not, avoiding unnecessary computation. Monotonicity is a require-
ment for all objective functions; however, it is optional for the decision functions
(classifiers), although a monotone decision function improves the algorithm’s perfor-
mance. Also, since there are no dominance relations among Pareto-optimal actions,
we propose a branch-and-bound algorithm to find all Pareto-optimal actions because
we consider them equivalently good.

3.2 Model-agnostic Pareto-optimal counterfactual antecedents mining
The proposed algorithm is a tree-based branch-and-bound (Lawler and Wood

1966) algorithm called MAPOCAM (Model-Agnostic Pareto-Optimal Counterfac-
tual Antecedents Mining); we detail it in Algorithm 1. In this recursive algorithm,

@ Springer

M. M. Raimundo et al.

each parameter’s call is a node that can create other nodes with a branching procedure
or avoid exploring subsequent nodes on a pruning procedure. In essence, MAPOCAM
can examine every combination of changes. However, it cleverly bounds nodes if it
preemptively knows that no subsequent branching will improve the optimal set of
solutions. This bounding procedure is the cornerstone of the algorithm’s efficiency.

Algorithm 1 Model-Agnostic Pareto-optimal Counterfactual Antecedents Mining

Require: A sample x, an objective function c(e), a decision rule r(e), a threshold 7, and a number of
allowed changes k.

1: procedure ENUMERATE(a, D)

2: ifli:aq; #0VieD|>kor3a’ € A:c(a) > c(a’) then
3 return

4: endif

5: if r(e) is monotone and r(x + a*) < 7 then
6: return

7 end if

8: if r(x+a) > t then

9: A= AU ({a}

10: return

11: endif

12: i =SELECT_FEATURE(Vi : i ¢ D)

13: forVva': alf > q; do

14: ENUMERATE(a’, D U {i}, A)

15: end for

16: end procedure

17: A={(1.D0 = ()
18:a) =0Vi e {l,....d}.
19: ENUMERATE(aY, D?)
20: return A

A node consists of an actiona : a; > 0, Vi € {1, ..., d} and a set of fixed features
D (line 1). The branching procedure consists of selecting a non-fixed feature i ¢ D
(line 12), calling the recursive function (line 14) with different actions’ values alf >0
for that feature i that now is fixed D’ = D Ui for the subsequent calls. All features
with no made decision are considered null ; = 0, Vi ¢ D and might have their value
altered in the subsequent branching.

Since any recursive call (line 14) will always increase the magnitude of the action
a; > 0, we can use the monotonicity function to stop a current call to make other
recursive calls. Thus, the bounding step consists of inspecting any branch that will
not improve the optimal set of solutions; thus, the node should not go deeper. This
algorithm works with three possible conditions:

1. bounding any node that has more than k changes: |i : a@; # 0 Vi € D| > k (line
2). Thus, since any other recursive call will increase the number of changes, we
can stop the call at this point;

2. bounding any node that will not improve the objective functions (a’, D’) : ¢(a) <
c(a’), a € A(from Definition 3 and Corollary 1 in Appendix A.1) when we already
have a set of feasible solutions A (line 2). Thus, since any other recursive call will
increase the action size, and we impose monotonicity in the objective functions,

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

any recursive call in this node will worsen the objective functions, creating a
dominated solution;

3. bounding nodes that any subsequent bounding will not generate a feasible solution
(line 5). Since any other recursive call will increase the size of the action, if we
have monotonicity in the decision function, we can follow Definition 9 and see
that a maximal achievable action® a* is unfeasible. Any recursive call in this node
will also be unfeasible.

In Appendix A.1, we show two essential properties of the bounding procedure.

First, by enforcing monotonicity in the objective functions, it is possible to see that
any subsequent branching of a node with dominated action will be dominated (Corol-
lary 1). Second, by enforcing monotonicity on the classifier, it is possible to prove
when all subsequent node branches are unfeasible because the maximal achievable
action a* is not feasible (Theorem 1). In Appendix A.1, we also prove two properties
of the algorithm: First, Algorithm A.1 finds all Pareto-optimal solutions (Theorem 2).
Second, the time complexity of Algorithm 1 is T(d, k) = O((bd)*) (Theorem 3),
where d is the number of variables, b is the maximum number of possible states of
each variable, and k is the maximal number of allowed changes.

Worth mentioning that the procedure SELECT_ FEATURE in Algorithm 1 is
responsible for indicating the next feature to be explored. Ideally, the procedure
SELECT_FEATURE will return the feature that most likely helps to find a feasible
solution. We give further details in Appendix C.

3.3 Objective functions

The monotonicity of the objective functions is the main property required by the
algorithm—in Appendix A.2, we define some basic properties of these monotonic
functions. To define the monotonic objective functions used in this work, we need
to know that we have a set of N samples xX e R, ice {1,..., N}, where d is the
number of features. We also define the working sample x € R¢ that we want to obtain
a different outcome. We present three objective functions: percentile change, feature
change, and the number of changes.

Definition 6 - Maximal percentile change (MPC).
First, let’s define the percentile for the feature value z;:

filxi > 2. Vi € {1,.... N}
N

li(z) = x 100 1

where | e | is the cardinality of the set, xj. is the j-th feature of the i-th sample.

Given that, a percentile change of an action a for the feature j is the absolute
difference in percentiles |/;(x) — [(x +a)|. Thus, the maximal percentile change c(a)
of an action a is max(|/;(x +a) — [;(x)|, j € {1,...,d}).

2 This action is a computationally efficient way of inspecting all possible feasible actions from future
branches. The mathematical concepts are better explained in Appendix A.1.

@ Springer

M. M. Raimundo et al.

Definition 7 - j-th feature change. The feature change for the feature j consists of the
magnitude of an action a for the feature j: ¢;(a) = a;.

Definition 8 - Number of changes. Consists on counting the number of changes (non-
zero values) of an action a: c(a) = |{ajla; #0,Vj e {l,...,d}|.

Theorem 5 in Appendix A.2 recognizes that any Pareto-optimal solution of the
monotonic objective function of any nature will be a Pareto-optimal solution using the
feature changes as objectives. Thus, resorting to feature changes as objectives create
a poll of counterfactual antecedents that will satisfy any preference, only needing to
filter other sets of objectives to find the desired antecedents.

3.4 Monotonicity on classifiers

Another characteristic that a classifier can have is its monotonicity. This property guar-
antees that if a feature increases, the outcome of the classifier (usually the probability)
will increase or decrease, but never both simultaneously; the same occurs when the
feature decreases. This property helps avoid branches with no feasible actions since
we can foresee the behavior of the classifier. Despite being a useful property, it is an
optional property to MAPOCAM.

In Appendix A.3, we show that some linear classifiers and ensembles of monotone
classifiers are monotone. Furthermore, in Appendix B, we depict how a similar prop-
erty for decision trees allows foreseeing that some decisions in the search make the
goal unattainable.

3.4.1 Enforcing monotonicity

In addition to naturally monotonic methods (e.g., logistic regression), some other
methods can be adapted to be monotonic, even though their families (e.g., decision
trees and neural networks) are not monotonic. Those methods enforce the machine
learning model to have a monotone behavior w.r.t. to any desired feature—increasing
that feature will always increase (or decrease) the output. In this category, we have
LightGBM3 (Ke et al. 2017) and Gupta’s research (Gupta et al. 2016).

3.4.2 Dealing with non-monotone classifiers

Despite being possible to enforce/guarantee the monotonicity of the classifiers/decision
functions, it is also possible to anticipate that some high-quality classifiers cannot hold
monotonicity. However, it is possible to use Algorithm 1 to find Pareto-optimal actions
for non-monotone classifiers. We can see that conditions on Lines 2 and 8 hold despite
the lack of monotonicity in the classifier as long as the objective function is monotone:
any actions with higher costs are not interesting. However, the second condition in Line
5 cannot hold since it can exist a feasible action @’ : a > a’ > a* in non-monotone
classifiers. Given that, the first condition (»(e) is monotone) in Line 5 ensures the
second condition (r (x +2*) < 7) only being applied if the decision rule is monotonic.

3 1t can be set with the monotone_constraints parameters at lightgbm.readthedocs.io/en/latest/Par
ameters.html.

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

3.5 Counterfactual antecedent index

Let us suppose the method generated a set of solutions A = {a!,..., a4} An
exciting property would be to observe how much each feature i € {1, ..., d} helps
find a counterfactual antecedent. To do that, we propose a counterfactual antecedent
index (CA;) for each feature i:

1 a! — max a;
CA; = — B T 2
' Vi Z max a; J @
aleA

where v; = |a : a] #0,a/ € Al is the number of counterfactual antecedents with a
non-zero value in the feature i, and v; = |a] :a] #0, j € {1,...,d}| is the number
of non-zero values in the action a; .

With this definition, itis possible to estimate how much, on average, a variable would
need to change to create a counterfactual antecedent. The index penalizes features that
need help from other features by multiplying by the number v;. If this number is
bigger than 1, this variable would have to surpass its limit to create a counterfactual
antecedent, indicating the need for other features to find a counterfactual antecedent.

This index helps summarize many counterfactual antecedents and aids the user in
understanding the importance of each feature.

4 Experiments

The following experiments aim at evaluating MAPOCAM in two aspects: (Experiment
1) the importance of multiple antecedents to give broader reasoning of counterfactuals,
as well as showing the importance of exploring counterfactuals on different machine
learning models; and (Experiment 2) the correctness and computational performance
of the method on monotonic and non-monotonic classifiers with single and multiple
objectives.

To evaluate the capability of finding counterfactual antecedents, we consider the
three credit datasets used in (Ustun et al. 2019): German Credit (labeled as german),
Give Me Some Credit (labeled as giveme), and Taiwan Credit (labeled as taiwan);
and two datasets from other domains: Student Performance (labeled as student) (Dua
and Graff 2017) and Pima Indians Diabetes (labeled as pima) (Smith et al. 1988).
These datasets have 1000, 120269, 30000, 395, and 769 samples and 27, 10, 17,
30, and 8 features. The credit datasets have socioeconomic and credit/bank history
as independent variables, the student dataset have socioeconomic family-related and
personal variables, and the pima dataset has health indicator variables. The dependent
variable indicates whether a person deserves credit (credit datasets) if a student has a
good grade (student dataset) and if a patient has diabetes (pima dataset). Given this, a
counterfactual objective is to provide options for changing the model outcomes. That
is, for a person to be classified as low-risk of default (credit dataset), suggest changes
to a student’s profile to be classified as a high-grade student (student dataset), and
suggest modifications to a patient’s profile to be classified as a low-risk diabetic (pima

@ Springer

M. M. Raimundo et al.

dataset). It is worth mentioning that it is always recommended to consult an expert
to give a practical and theoretical basis that such feature changes would change the
outcome. MAPOCAM implementation using the Python programming language is
available at github.com/visual-ds/cfmining.

4.1 Experiment 1: Pareto-optimal counterfactual antecedents

In this experiment, we create Pareto-optimal counterfactual antecedents for a single
sample of credit to show the capability of MAPOCAM to work on a wide range of
scenarios. In Sect. 4.1.1, we evaluate how MAPOCAM behaves in extracting counter-
factual antecedents on monotone classifiers., Sect. 4.1.2 discusses how some important
classifiers (such as decision trees and neural networks) cannot hold the monotonicity
property and how different the mined counterfactual antecedents are.

We limit the counterfactual antecedents to change at most three features for any case
in this experiment. We choose value three because it can attain various antecedents
without demanding excessive computational effort. Figures 3, 4, 7, 8, and 9 depict
the enumeration of counterfactual antecedents. Following the same pattern of Fig. 1,
the first column (Orig column) shows the original values inside the squares, and the
following columns (C1, C2, and others) illustrate a set of counterfactual antecedents
with the new value inside the squares. We can observe the changes in sparsity (only
a few squares per column); we also use colors to differentiate the features easily. We
sort the counterfactual antecedents by MPC cost: lower cost on the left and higher on
the right.

4.1.1 Monotone classifiers

In this experiment, we show the algorithm’s capability of enumerating a representation
of all Pareto-optimal solutions. This experiment uses the credit dataset to train an [
penalized Logistic Regression using Scikit-learn (Pedregosa et al. 2011) and selects
a sample to extract counterfactual antecedents using MAPOCAM. We use two multi-
objective formulations to show the behavior in more than one scenario: (i) minimize
the action for every feature; (ii) minimize the maximal percentile change (MPC) cost
and the number of changes—Figs. 3 and 4 show the results for formulation (i) and
(i), respectively.

Figure 3 shows a vast set of counterfactual antecedents allowing multiple com-
binations. Despite having the lowest MPC cost, increasing the balance above $500
in the savings account suggested in (C1) might be hard for the user. However, other
antecedents might be more accessible to the user: (C9) increasing savings account
balance above $100 and closing a loan in other banks; or (C10) increasing checking
account above $200 and signing in to have a telephone. Our technique, using this for-
mulation, works as an enumeration of every possible combination of features’ changes
without depicting solutions with an even more profound feature change. This model-
ing gives users a wide range of possibilities to find the most suitable counterfactual
antecedent.

@ Springer

https://github.com/visual-ds/cfmining

Mining Pareto-optimal counterfactual antecedents with a...

Ofg C1 C2 C3 €4 C5 C6 C7 C8 C9 Clo Cll Cl2 C13 Cl4 CI5 Cl6 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28
Feature names i

ot 1 1 1 1 1 1 1
SavingsAccountBalance_geq_500

LoanRateAsPercentOfincome
SavingsAccountBalance_geq_100
YearsAtCurrentjob_geq_4
YearsAtCurrentHome
NumberOfOtherLoansAtBank
HasTelephone
CheckingAccountBalance_geq_200
NumberOfLiableindividuals

OtherLoansAtBank

© = = o o m m o o =&

OwnsHouse 1

Fig.3 Enumeration for Logistic Regression of counterfactual antecedents with Pareto-optimal values when
each feature is considered as an objective function. Orig column is the original sample and the columns C1
to C28 are counterfactual antecedents

Fig.4 Enumeration for Logistic
Regression of counterfactual
antecedents with Pareto-optimal CheckingAccountBalance_geq 200 | 0 | 1
values when the MPC cost and
the number of changes are the
objectives. Orig column is the OtherlLoansAtBank 1 0
original sample and the columns
C1 and C2 are counterfactual
antecedents

Using the second formulation, MAPOCAM gets two counterfactual antecedents
(See Fig. 4). (C1) shows that increasing a checking balance above $200 simultaneously
with increasing savings above $500 is a counterfactual antecedent with the lowest MPC
cost. Meanwhile, (C2) shows that ending loans at other banks is an alternative with
higher MPC costs but with a single change. Both antecedents represent the designer’s
preferences, also enumerated in Fig. 3. It shows that no matter user preferences, the
resulting trade-offs can be filtered from the enumeration using feature changes as
objectives, as said in Sect. 3.3.

Feature names Orig C1 C2
. \ \

SavingsAccountBalance_geq_500 0 1

4.1.2 Non-monotone classifiers

In this experiment, we explore the capability of MAPOCAM to find counterfactual
antecedents on non-monotonic classifiers. Figure 5 shows the impact of increasing the
variables LoanAmount, LoanDuration, and Age on the probability of having
the credit granted for an adjusted multilayer perceptron (MLP). Here, MLP does not
have monotonic behavior since the probability might increase or decrease for the same
variable.

Figure 6 shows an adjusted tree with a depth of three. To understand its
non-monotonicity we rely on a sample with the following attributes: Critical-
AccountOrLoansElsewhere=1, OtherLoansAtBank=1, Age=41, Loan-
Duration=16, and LoanAmount=7000. If we change CriticalAccount-
OrLoansElsewhere from 1 to 0, its probability of getting credit will decrease
from 45.5% to 14.3%. However, if we change LoanAmount from 7000 to 6000,
changing CriticalAccountOrLoansElsewhere from 1 to 0 would cause the
probability to increase from 45.5% to 76.1%. This change of behavior, depending

@ Springer

M. M. Raimundo et al.

0.95 0.95
0.9 0.90 0.90
0.85 - 0.85 4
> > >
£ 0.8 £ F
£ £ 0.80 1 £ j
3 3 : 0.80
507 £ 0751 £ 0751
. * 0.701 < 070
0.65]
0.6 0.65
T T T T 060 1 T T T 060 1 T T T T
0 25 50 75 100 0 2000 4000 0 200 40 60 80
LoanDuration LoanAmount Age
(a) LoanDuration (b) LoanAmount (c) Age

Fig.5 Representation of impact of increasing each variable in the probability of having credit granted in a
multilayer perceptron

(CriticalAccountOrLoansElsewhere <0.5 ’

True False
[LoanDuration <16.5 ’ OtherLoansAtBank <0.5 ’
True False True False

LoanAmount <6138.5 || SavingsAccountBalance geq500<0.5 J LoanAmount <11496 J (Age =< 45J

False False False
Peana=0143 | [W =867 Peana=00 [Y pp=10 |
True
pgmmz’d = 0761] pgm/xlcd = 056 J pgra/xled = 0875] pgmm('rl = 0455]

Fig.6 Representation of a decision tree for the German dataset with a depth of 3

on other attributes, characterizes CriticalAccountOrLoansElsewhere as a
non-monotone attribute.

Both examples show relevant machine learning models that do not preserve the
monotonicity property. However, they still demand a robust methodology to find
counterfactual antecedents for those complex models. Selecting the same sample inves-
tigated in Figs. 3 and 4, we used MAPOCAM to enumerate counterfactual antecedents
to show how different they are and how various machine learning models uncover dis-
tinct counterfactual antecedents. We chose three machine learning models: (a) the

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

Feature names

Orig C1 C2 C3 C4 C5 Cé

C7 Cs8 C9 Cl10 C11 Cl12
L L L

RentsHouse ! I ;
LoanRateAsPercentOfincome 4 3
YearsAtCurrentHome 2 3

NumberOfOtherLoansAtBank 2 1
NumberOfLiablelndividuals g 2

HasTelephone 0 L
CheckingAccountBalance_geq_200 ol

SavingsAccountBalance_geq_100 0 1
SavingsAccountBalance_geq_500 0 1

MissedPayments 1 0
OtherLoansAtBank i) 0

OwnsHouse 0 1
YearsAtCurrentjob_geq_4 0 1

Fig. 7 Enumerations for a multilayer perceptron (whose monotonicity is depicted in Fig. 5) with Pareto-
optimal values when each feature is considered as an objective function. Orig column is the original sample
and the columns C1 to C12 are counterfactual antecedents

Fig.8 Enumerations for a

decision tree (depicted in Fig. 6) Feature names Oflg C.l C.2
with Pareto-optimal values when SavingsAccountBalance_geq_500 | 0 1
each feature is considered as an |
objective function. Orig column CriticalAccountOrLoansElsewhere 1 0 :
is the original sample and the OtherLoansAtBank A
columns C1 and C2 are

counterfactual antecedents

multilayer perceptron, which has the probability behavior depicted in Fig. 5; (b) the
decision tree illustrated in Fig. 6; and (c) a gradient boosting trees (LightGBM) to
complement the decision trees with a more robust classifier.

Figure 7, 8, and 9 shows valuable suggestions to change the prediction given by
non-monotone classifiers. It is worth observing that new features are essential to the
decision depending on the classifier: (1) changing CriticalAccountOrLoans-
Elsewhere is an antecedent on Decision Trees (C1 in Fig. 8) and LightGBM (C2,
C3, and others, in Fig. 9), but it is not in Logistic Regression (Fig. 3) and Neural
Networks (Fig. 7). (2) changing RentsHouse is an antecedent on LightGBM (C3
and C7 in Fig. 9) and Neural Networks (C4 and C5 in Fig. 7), but it is not in Logistic
Regression (Fig. 3) and Decision Trees (Fig. 8). The variations found by enumeration in
distinct learning machines show the importance of using a model-agnostic algorithm.
MAPOCAM compares the classifiers’ counterfactual antecedents and promotes richer
analysis to understand the problem in real life.

4.2 Experiment 2: comparing correctness and performance

In this experiment, we rely on the three datasets (german, giveme, and taiwan) to assess
the capability of finding the optimal solution (on single-objective) or set of Pareto-

@ Springer

M. M. Raimundo et al.

Orig C1 C2 C3 C4 C5 Ce6 C7 C8 (C9 Cl0 Cl1 C12 C13 Cl4 C15 Cl6 C17
Feature names

1 o o o 0o o 0 [0 0 0|
CriticalAccountOrLoansElsewhere i

LoanRateAsPercentOfincome
HasTelephone
YearsAtCurrentjob_geq_4

NumberOfLiablelndividuals

RentsHouse i

YearsAtCurrentHome

NumberOfOtherLoansAtBank 2 2

CheckingAccountBalance_geq_0 0 1

CheckingAccountBalance_geq_200 | © 1
SavingsAccountBalance_geq_100 o 1

SavingsAccountBalance_geq_500 o 1

MissedPayments 1 o
NoCurrentLoan o 1
OtherLoansAtBank 1|0

OwnsHouse 0 1

Fig. 9 Enumerations for a LightGBM with Pareto-optimal values when each feature is considered as an
objective function. Orig column is the original sample, and the columns CI to C17 are counterfactual
antecedents

optimal solutions (on multi-objective). Moreover, we analyze the computational time
of our approach. No matter the experiment, we first train a machine learning model
(which can be Logistic Regression or lightGBM classifier) in a training set and then
perform a test on a separate data set of 100 samples. Finally, we use MAPOCAM
(and the baselines) to extract counterfactual antecedents from samples with an unde-
sired outcome on the test set, allowing us to access the algorithms’ correctness and
performance.

4.2.1 Baselines

We have different sets of baselines for single and multi-objective experiments. For
single-objective experiments (using the objective of MPC cost described in Sect. 3.3),
we compare MAPOCAM with a mixed-integer formulation (to compare with an exact
approach) and a greedy process (to have an algorithmic reference). The mixed-integer
formulations consist of optimization models that extract properties from specific clas-
sifiers to find counterfactual antecedents, thus demanding individualized approaches:
mi-logistic for logistic regression (based on (Ustun et al. 2019)) and mi-trees for the
ensemble of decision trees (based on (Cui et al. 2015)). The greedy approach is not
individualized. Given an intermediate action, the greedy algorithm finds a new action
with the best performance to participate in the next iteration. This action should have
a change in a single feature, and the performance is the ratio between the MPC cost
of making such an action and the improvement in the decision rule. This iterative
procedure continues until it finds counterfactual antecedents with the desired outcome
or no other action can improve the decision rule.

For multi-objective experiments (using the objective of MPC cost vs. the number of
changes and j-th feature change described in Sect. 3.3), we also compare MAPOCAM

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

Table 1 Average execution time, in seconds, for finding an action optimizing the MPC cost

German Giveme Taiwan Pima Student
Mi-logistic 0.02 0.015 0.02 0.01 0.02
Greedy 0.01 0.013 0.03 0.02 0.03
MAPOCAM 0.02 0.004 0.06 0.01 0.14

with a mixed-integer formulation (to compare with an exact approach) and a brute-
force approach (to have an algorithmic reference). The mixed-integer formulations
in a multi-objective context consist of approaches that execute the mixed-integer
optimization several times: po-mi-logistic for logistic regression and po-mi-trees for
the ensemble of decision trees. At each time, we add a constraint that forbids the
optimization to find counterfactual antecedents dominated by the previously found
solutions—resorting to a procedure used in general mixed-integer problems (Sylva
and Crema 2004) that is further detailed in Algorithm 2 in Appendix C. We proposed
both approaches (po-mi-logistic and po-mi-trees) as simple extensions to (Ustun et al.
2019) and (Cui et al. 2015) because there is no Pareto-optimal approach for counter-
factual antecedents in the literature. The brute-force approach is not individualized
and is designed similarly to Algorithm 1 without the code from Line 2 to 11 to avoid
any early bounding, storing every counterfactual antecedent, even the dominated ones.
Thus, it enumerates all possible actions without trying to stop the explorations early.
Both multi-objective formulations and methods have the number of changes limited
to three to attain a good variety of antecedents without demanding excessive compu-
tational resources.

Worth mentioning that (Ustun et al. 2019) indicate a method to find multiple coun-
terfactuals; however, we decided to promote a modification to find all Pareto-optimal
counterfactual antecedents instead of the suggested method to be comparable with the
proposed it method. We did not include other methods that find multiple counterfac-
tual antecedents because they cannot find Pareto-optimal counterfactual antecedents.
Also, they use different norms (to enforce diversity (Karimi et al. 2020; Mothilal
et al. 2020)), generating antecedents of different natures and even generating domi-
nated antecedents. Thus, the execution time would not be comparable to the proposed
method.

4.2.2 Experiment 1: comparing performance on logistic regression

In this experiment, we consider the three credit datasets and train a /; penalized logistic
regression using Scikit-learn (Pedregosa et al. 2011) library. After cross-validation
training, we define a threshold of 7 to guarantee the probability of credit granted at least
50%. We use three optimization approaches to assess the correctness and performance:
MAPOCAM, mi-logistic, and greedy. Table 1 shows the time performance of such
algorithms. Worth mentioning that MAPOCAM and mixed-integer always find the
best solution while greedy algorithms find 79%, 25%, 3%, 27%, and 56% optimal
solutions for the datasets.

@ Springer

M. M. Raimundo et al.

Table 2 Average execution time, in seconds, for finding a representation of a Pareto-front

Conflict Method German Giveme Taiwan Pima Student

MPC versus #changes Po-mi-logistic 0.01 0.01 0.02 0.01 0.02
Brute-force 0.84 1.64 2.39 0.74 1.32
MAPOCAM 0.09 0.01 0.16 0.02 0.18

Feature Po-mi-logistic 0.55 0.04 2.89 0.15 221
Brute-force 0.55 1.07 2.35 0.56 1.43
MAPOCAM 0.18 0.01 0.45 0.03 0.48

This experiment verifies that the proposed method can find the best result in all situ-
ations, showing MAPOCAM'’s correctness. The computational times of MAPOCAM
are similar in three credit datasets, being a bit costly for taiwan and student datasets,
but still quite acceptable. The higher computational cost, mainly when compared
against mixed-integer, can be justified by two factors. (i) Data structure and pro-
gramming language: our approach is implemented in Python with a NumPy array as
a data structure, while the mixed-integer uses a CPlex* package implemented in C.
(i1) The mixed-integer approach relies on more information to tackle the problem: the
mixed-integer formulation makes use of additional information in every node to find
a tighter projection of the “future" of the node. In contrast, our approach does not
rely on any of this information. This makes our approach more general and capable
of dealing with any decision function, such as decision trees or multilayer percep-
tron.

4.2.3 Experiment 2: enumeration of Pareto-optimal counterfactual antecedents

In this experiment, we show the algorithm’s capability of enumerating a representation
of all Pareto-optimal solutions. We use the same training procedure and threshold of
the previous experiment to explore two multi-objective formulations: (i) minimize the
action for every feature; (ii) minimize the MPC cost and the number of changes.

Table 2 shows the time performance of the MAPOCAM, mixed-integer, and brute-
force approach; we also confirm that both searches find the same number of solutions
for all of the samples. The proposed method tends to perform similarly to the mixed-
integer approach, being faster than a brute-force approach in both scenarios: with
two objectives (MPC cost vs. # changes) and more than two objectives (features).
Notice that MAPOCAM is more costly than mixed-integer with two objectives (MPC
cost vs. # changes), but it performs better with more than two objectives (features).
This difference is mainly caused by evaluating the MPC cost—while this compu-
tation is costly in our approach, it is not relevant in the mixed-integer since the
model itself embeds this information—since the cost of comparing the features is
low.

4 Available at ibm.com/analytics/cplex-optimizer.

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

Table 3 Average execution time, in seconds, for finding solutions on a random forest (*greedy not always
find the best solution)

Conflict Method German Giveme Taiwan Pima Student
MPC cost mi-trees 0.02 0.02 0.04 0.02 0.02
Greedy 0.01 0.01 0.02 0.02 0.01
MAPOCAM-N 0.37 0.02 5.42 0.56 0.02
MAPOCAM-P 0.04 0.01 0.49 0.12 0.01
MPC versus #changes po-mi-trees 0.04 0.03 0.99 0.10 0.02
Brute-force 0.71 0.21 241 1.45 0.62
MAPOCAM-N 0.30 0.02 0.73 0.21 0.04
MAPOCAM-P 0.10 0.01 0.13 0.09 0.02
Feature po-mi-trees 0.03 0.02 0.98 0.09 0.02
Brute-force 0.26 0.13 1.70 1.01 0.15
MAPOCAM-N 0.17 0.06 1.28 0.45 0.05
MAPOCAM-P 0.13 0.02 0.29 0.18 0.03

4.2.4 Experiment 3: comparing performance on non-monotonic classifiers

We showed in Sect. 4.1.2 that the proposed method works properly in some non-
monotonic classifiers. This experiment aims to examine the performance of the
proposed algorithm in a forest of decision trees. We consider the three credit datasets
and train a Random Forest from Scikit-learn (Pedregosa et al. 2011), with five esti-
mators, a depth of five, and 31 leaves. We define a threshold of t to guarantee the
probability of credit granted at least 50% and use three optimization approaches to
assess the correctness and performance.

Table 3 shows the time performance of such algorithms with one (MPC cost), two
(MPC cost vs. # changes), and multiple objectives (feature). Except for the greedy
algorithm, all methods were capable of finding the Pareto-optimal set of solutions. In
this experiment, we show two versions of the proposed algorithm: (i) MAPOCAM-
N is a version with no unfeasibility branching, and (ii)) MAPOCAM-P explores the
possibility of evaluating all leaves from the random forest and finding the optimization
tree’s maximal probability, considering that it already took some actions. This second
approach can behave similarly to a monotone classifier because it avoids unpromising
branching, thus improving time performance.

In this experiment, the MAPOCAM can find optimal solutions in all instances. The
performance is quite competitive when the predictor can foresee unfeasibility in the
node (MAPOCAM-P version). However, the technique tends to be time-consuming
without resorting to methods that foresee unfeasible nodes (MAPOCAM-N version).

Since it is possible to observe a gain in MAPOCAM-P performance, we investigate
the monotonicity’s impact on the optimization procedure. In that regard, we explore
the monotonicity constraints on the LGBMClassifier class from the lightGBM? library.
Given that, we train LGBMClassifier with ten estimators, a depth of ten, and 63 leaves.

5 lightgbm.readthedocs.io.

@ Springer

M. M. Raimundo et al.

Table 4 Average execution time, in seconds, for finding solutions on a monotone lightgbm (*greedy not
always find the best solution)

Conflict Method German Giveme Taiwan Pima Student
MPC cost mi-trees 0.03 0.03 0.07 0.03 0.02
Greedy 0.02 0.02 0.08 0.03 0.01
MAPOCAM-N 4.13 0.01 1.35 0.24 0.10
MAPOCAM-P 0.02 0.01 0.05 0.02 0.01
MAPOCAM-M 0.02 0.01 0.05 0.02 0.01
MPC versus #changes po-mi-trees 0.07 0.04 0.94 0.05 0.02
Brute-force 1.39 0.68 20.94 0.75 0.46
MAPOCAM-N 0.49 0.01 0.56 0.12 0.11
MAPOCAM-P 0.04 0.01 0.08 0.02 0.02
MAPOCAM-M 0.04 0.02 0.09 0.02 0.01
Feature po-mi-trees 0.07 0.03 0.94 0.05 0.02
brute-force 0.54 0.46 17.04 0.53 0.27
MAPOCAM-N 0.30 0.07 12.56 0.22 0.22
MAPOCAM-P 0.04 0.01 0.94 0.03 0.01
MAPOCAM-M 0.04 0.02 0.90 0.03 0.01

We define a threshold of 7 to guarantee the probability of credit granted at least 50%
and use three optimization approaches to assess the correctness and performance.
We compare the same contenders from the previous comparison, but now we have
three variations from the proposed algorithm. (i) MAPOCAM-N is a version with no
unfeasibility branching. (ii)) MAPOCAM-P explores the possibility of evaluating all
leaves from the random forest and finding the maximal probability of the optimization
tree, considering that it already took some actions. And (iii) MAPOCAM-M explores
the monotonicity to avoid unfeasible branches. Table 4 shows the time performance
of such algorithms with one (MPC cost), two (MPC cost vs. # changes), and multiple
objectives (feature).

This experiment shows that MAPOCAM can find optimal solutions in all instances.
MAPOCAM has a competitive performance when it explores the monotonicity
property of the classifier (MAPOCAM-M version) or when it deals with other classi-
fiers’ properties to estimate the maximum probability of a counterfactual antecedent
(MAPOCAM-P version). The difference in performance is due to the difference
in computational effort requested by the foreseeing step on MAPOCAM-P and
MAPOCAM-M in particular cases. However, the method tends to be time-consuming
without resorting to methods that foresee unfeasible nodes (MAPOCAM-N version).

4.2.5 Discussion

In general, MAPOCAM achieves good performance when: (i) the classifiers are mono-
tonic or (ii) it explores the constraints of achievable leaves in decision trees.

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

The execution time is also manageable without any information about the model
(MAPOCAM-N)- generally taking less than 1 min. This method application leads
to a flexible plug-and-play model-agnostic method capable of working with any
classifier without providing any model-related procedure. Any other method in the
literature needs model-related procedures to work, such as (i) creating a new mixed-
integer model (Ustun et al. 2019; Cui et al. 2015), (ii) requiring differentiable
functions (Mothilal et al. 2020), or (iii) transforming the model to another repre-
sentation (Karimi et al. 2020).

Worth mentioning that MAPOCAM can create a diverse set of counterfactual
antecedents using multi-objective optimization. Theorem 5 in Appendix A.2 shows
that MAPOCAM enumerates all proper counterfactual antecedents without resorting
to norms and adjusting their parameters (Mothilal et al. 2020; Karimi et al. 2020). Also,
po-mi-logistic and po-mi-trees are modifications from mixed-integer models (Ustun
etal. 2019; Cui et al. 2015) that we adapted to interactively find Pareto-optimal coun-
terfactual antecedents. Moreover, this paper is a pioneer in considering multi-objective
optimization in counterfactual antecedent mining.

5 Case study: enumeration of counterfactual antecedents for crimes
in Sao Paulo

In this experiment, we consider the impact of counterfactual antecedents on policy
decision-making on crime. As a case study, we investigate crime patterns in Sdo
Paulo city in Brazil. We gathered socioeconomic, urban, and crime information from
census regions of Sao Paulo. The Center for the Study of Violence from the University
of Sdo Paulo (NEV-USP)® provided us with the criminal records. The Center for
Metropolitan Studies (CEM)’ provided us with data about schools, bus stops, and bars.
With this data, we ranked census regions by the rate of passerby crimes normalized
by each region’s total population. Then, we labeled the 10% regions with higher rates
as dangerous and fitted an /, regularized Logistic Regression to classify if an area is
hazardous or not.

Given a census region classified as dangerous, MAPOCAM can create counterfac-
tuals that give an idea of what a decision-maker could do to make that region safer. An
expert can then be consulted to provide a practical and theoretical basis and assert that
these feature changes would change the outcome. Figure 10 describes counterfactuals
in Region 1. This region has a high incidence of violent crimes in the 2000s. The
original attributes of this region are depicted in the first column (Orig) of the figure,
showing an impoverished region with a relatively low HighIncomeHolder (per-
centage of householders), PermanentHousing (percentage), WaterSupply and
SewageCollection (service coverage). The other columns (C1, C2, and others)
show possible counterfactuals to change the high-criminality outcome. For instance,
C2 shows that increasing PermanentHousing from 0.843 to 0.876 is a counter-
factual. On the other hand, C5 shows that a minor increase in PermanentHousing

6 nevusp.org.
7

centrodametropole.ffich.usp.br/pt-br.

@ Springer

M. M. Raimundo et al.

Ofg €1 €2 C3 G4 C5 C6 C7 C8 CO Clo ClI C12 CI3 Cl4 CI5 C16 C17 C18 CI9 C20 C21 C22 C23 24 C25 C26 C27 C28 C29 C30 C31 C32 €33 C34 C35 C36 C37 C38 C39 C4O C41 Ca2 C43 Cad C45

Feature names

Fig. 10 A multi-objective enumeration of actions that reduce the criminality rate of a region of Sao Paulo.
Orig column is the original sample, and the columns C1 to C45 are counterfactual antecedents

(from 0.843 to 0.857) and reducing Passengers from 1.08 (thousand) to 1.06 is
another way to achieve a counterfactual.

In general, it is possible to observe that reducing population size, average traveling
time, and the number of bus stops—lowering people volume in the region—would
change outcomes related to high-criminality. Other factors, such as increasing liter-
ate householders, permanent housing, water supply, and high-income holders, might
indicate a socioeconomic interpretation of reduced criminality in wealthier regions.
One can correctly say that this is a direct effect of the logistic regression weights.
Nevertheless, only with our methodology can we observe the intensity and combi-
nation of changes that lead to the desired safety. We also want to highlight that it is
suggested to increase the number of favelas to 1 (C17). It looks counterintuitive, but
we should remember that we are using correlation-based machine learning to extract
the counterfactual antecedents. This correlation might come from the low notification
of crimes in poorer, vulnerable regions, making the machine learning model associate
sub-notification with a low-crime region. This suggestion should not be considered
when proposing a public policy. Nevertheless, since the proposed method can find a
diverse set of counterfactual antecedents, an expert can remove those related to critical
(or sensible) variables and investigate others.

However, we can also find some undesired suggestions, such as becoming a high-
risk (a favela area) or decreasing the region’s sewage collection. To fix that, we
can disable changes on these features or specify if those features should increase
or decrease. Figure 11 depicts an enumeration of changes after the aforementioned
disabling. This new scenario shows more realistic planning, such as modifying the
bus routes (to reduce the number of passengers passing through this region), reducing
the traveling time, improving the water supply, and incentivizing population growth.
Note that we labeled the regions considering the criminality rate, so the suggestion to
increase the population might reduce the rate, explaining this proposed change.

Figures 10 and 11 show a set of highly insightful counterfactual antecedents.
These options help understand the prediction, but when the number of counterfac-
tual antecedents is too high, it is hard to select the best suitable one and understand
each feature’s impact on the learning. To better understand the overview of coun-
terfactual antecedents before selecting one, Fig. 12a presents the feature importance
in a logistic regression (higher the value, the more important is the variable), and

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

Orig C1 C2 C3 C4 C5 C6 C7 C8 C9 ClO Cll C12 C13 Cl4 C15 C16 C17 C18 Cl9 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29
Feature names

20 27 27 27 27 27 21 21 21 21 2 2 15
TravelingTime

874 885 885 885 91 91 91 91 91 .91 91 885
LiterateHouseHolder

843 876 857 857 857 857 857 857 857 857
PermanentHousing

WomanHouseHolder | 2% 35 35 35 35 3 Laas s

YoungManRate 089 .093 093 .093 093 116 093 093

Passengers 1.08 1.06 106 106 1.06 781 1.06

WaterSupply 869 901 901 901 901
Population 401

HighincomeHolder 025 037

PopulationDensity

Fig. 11 A multi-objective enumeration of actions that reduce the criminality rate of a region of Sao Paulo.
This is the same enumeration from Fig. 10, but some features were not allowed to participate in counterfactual
antecedents because of undesired changes. Orig column is the original sample and the columns C1 to C29
are counterfactual antecedents

BusStops

Schools = ~— 4 4
ars 1 R 4
Verticalization - 1 — A ———
YoungManRate - g —— —
GarbageCollection = 4 4 4
SewageCollection - - ——
PermanentHousing g]
ImprovisedHousing]]]
PopulationDensity -je—— — — J—
WomanHouseHolder -
LiterateHouseHolder 1
Highlnc 1 ST]
WaterSupply S ————— 4 4
Favelas - — — —
Population s - — ——
ExpansionPhase {ssm—m = j =
FontainArea = 4
HighRiskAreas f— — ——
TravelingTime — 5 4
— -
0.0 0.5 1.0 1.5 1 2 3 0 1 2 3 0 1 2 3
(a) Logistic Regression (b) Region 1 (¢) Region 2 (d) Region 3

Fig. 12 This figure shows the representation of the importance of each feature. a represents the feature
importance for the logistic regression learning process (higher the better); b—d represent how much a
feature has to change to participate in a counterfactual antecedent (the lower the better). The value is
normalized by how much the variable can change; greater than one means that the variable usually needs
other features to participate in a counterfactual antecedent. Grey bars represent features that never participate
in a counterfactual antecedent. Thus, we represented them as having the largest cost—3

Fig. 12b—d present the C A; index described in Sect. 3.5 for three different regions in
Sdo Paulo: the already mentioned Region 1, the central and commercial Region 2, and
the wealthy Region 3 (with headquarters of many corporations). The C A; index indi-
cates how much a feature has to change to create a counterfactual antecedent on relative
average (near 0—small change, near 1—vary to its maximum, between 1 and 3—need
another variable to create a counterfactual antecedent, and gray bar—unachievable.

Figure 12 shows exciting properties: (i) the C A; index for each feature is dif-
ferent from the importance calculated with counterfactuals antecedents; (ii) the
indexes on each region are different from each other. From these results, we can
say that reducing crime requires different approaches for each region. Also, we
observe that reducing the number of BusStops and Bars does not help achieve
counterfactuals in Regions 2 and 3 because these regions do not have those ameni-
ties. Socio-economic variables (PermanentHousing, HighIncomeHolder,
and LiterateHouseHolding) need more change to help Region 2 and Region
3 become safer, mainly because those regions already have better socio-economic
conditions.

@ Springer

M. M. Raimundo et al.

This case study depicts the importance of relying on counterfactual antecedents in
policy decision-making. We could identify the particularities of each region, pointing
to more effort in solving socio-economic issues in the most vulnerable areas, which a
single explanation would not necessarily point to the whole model (e.g., feature impor-
tance in Logistic Regression). We envision a real impact on criminality control using
our methodology with a richer dataset (e.g., information about road signaling, side-
walk preservation, wall painting, and urban lighting), which would allow suggestions
for departments on urban administration to help with criminality control.

6 Discussion and limitations

This research’s final product successfully constructs a model-agnostic algorithm that
finds diverse counterfactual antecedents using multi-objective optimization concepts.
However, there are some limitations and future work that can be addressed in follow-up
work.

Performance. Compared to other approaches that explore mixed-integer solvers (Cui
et al. 2015; Ustun et al. 2019), we notice that our method is rarely better but has
competitive performance. The mixed-integer approach has more available information
(e.g., linear relaxations of the problem), more computational resources (can explore
parallelism), and a more cost-efficient programming language and data structure. Thus,
it indicates that having a competitive performance shows our proposal’s real value,
which is also more general and can deal with any classifier. Therefore, the following
steps can improve our approach:

— Use model information before the branching procedure on each node, such as:
(1) explore the use of a linear relaxation for logistic regression; (2) use convex
optimization to find heuristic solutions on neural networks; and (3) use satisfiability
modulo theories (SMT) to verify the feasibility of some actions (Karimi et al. 2020).

— Asatree search, anode does not depend on information from other nodes. Thus, we
could implement a parallel version that only needs to share the found counterfactual
antecedents.

— Asafirst approach, we used the NumPy array as a data structure for counterfactual
antecedents, but it can be improved using more sophisticated solutions.

— Another option to improve the performance is to use other search algorithms such
as A*. This strategy can take advantage of heuristics designed for every objective
function.

Discretization. We proved that our algorithm could find every Pareto-optimal counter-
factual antecedent given a set of possible actions. The optimality is globally valid for
decision trees. We create a step for every interval between decisions on the features
promoted by decision trees (or ensemble trees), thus covering all possible changes for
that decision tree. We use a simple stepwise discretization with absolute or relative
steps for numerical features for linear classifiers and neural networks. However, this
decision does not guarantee the optimal result for all discretizations. One solution
could be to use a binary search for further refining when a counterfactual antecedent is
found (Karimi et al. 2020). Improving the discretization can also help find better-suited

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

solutions and optimal value with lower costs. On the other hand, for non-monotone
classifiers, it helps to find more counterfactual antecedents. Nevertheless, it can dras-
tically change the search structure or require a specific design for every family of
classifier methods.

Opposite direction actions. Another alternative to dealing with non-monotone clas-
sifiers is to create two variables for each feature, i.e., one for the positive and one
for the negative values. This strategy removes any conflict between the negative and
positive directions. Also, it allows the design of a monotone objective function to deal
with negative actions. We plan to work on it as an immediate future work; however, it
needs additional theoretical and experimental developments to ensure stable algorithm
behavior.

Categorical variables. Another limitation in our proposal consists of dealing with cat-
egorical features. We did not consider this feature in the algorithm because it depends
on the encoding strategy. However, it is possible to encode constraints in the algo-
rithm to use categorical variables. It might be an immediate future work, but we need
more theoretical and experimental developments to ensure a stable algorithm’s stable
behavior.

Causality. Since the investigated model is correlation-based, like most machine learn-
ing models, the generated counterfactual antecedents reveal correlations and not causal
implications. This limitation is common in model-agnostic approaches (Chou et al.
2022). We believe that using causal inference methods (Judea 2010) can help experts to
find more reasonable counterfactual antecedents, but dependencies between variables
are hard to infer. In fact, generating counterfactual antecedents with causal relations
is still an open question, we intend to approach in a follow-up work.

Visualization. All the experiments take care of choosing examples that do not have
many possible actions; we did it to simplify the analysis. However, we notice cases
with more than a hundred actions, which could be overwhelming to anyone analyzing
the possible counterfactual antecedents. We are now working on creating a visual
analytic system to explore the counterfactuals interactively. This system should also
allow selecting and filtering counterfactuals with some properties, e.g., having (or not
having) a feature of a specific change and showing the counterfactual antecedents with
different visualization methods.

7 Conclusion

The main finding of this research is a tree-based algorithm, called MAPOCAM, that
enumerates all Pareto-optimal counterfactual antecedents. Our technique helps to inter-
pret model prediction and to mine counterfactual scenarios. Moreover, our algorithm
possesses properties validated by empirical evidence. First, it is optimal; we found the
same outcomes as a mixed-integer algorithm in single-objective problems and with a
brute-force approach in multi-objective situations. Second, it is model-agnostic; we
tested our algorithms with linear models, multilayer perceptron, and decision trees.
Third, it is diverse; we explore multiple counterfactual antecedents to analyze real-
world applications.

@ Springer

M. M. Raimundo et al.

Another exciting feature of this research relies on the counterfactual antecedent
index. This index helps explore real-world applications when the set of antecedents is
numerous. For instance, in the case study of Sao Paulo, our tools gave a good overview
of the usefulness of diverse counterfactual antecedents in crime analysis.

The use of multi-objective concepts by MAPOCAM diversifies the counterfac-
tual antecedents, helping to provide information on the model’s behavior for a given
sample. Modeling each feature as an objective helps find counterfactual antecedents
with distinct sets of features and find trade-offs among them. Both aspects and the
Pareto-optimality (no other counterfactual antecedent is better in all objectives) are
keys to mining counterfactual antecedents. This research makes an essential step in
this matter.

Acknowledgements This work was supported by CNPq-Brazil (Grants #312483/20180) and Getilio Vargas
Foundation.

Appendices

A Proofs of the theorems

This appendix presents some theoretical proofs of properties concerning the proposed
methodology.

A.1 Algorithm properties

To help on branching nodes in Algorithm 1 it is simple to see that from Definition 3
subsequent nodes of a node with dominated action will be dominated.

Corollary 1 Let a and a' as in Definition 3 and consider that a’ and a set of taken
decisions D' defines a node. It is possible to see that no subsequent action in this node
a > a’ will improve any monotone objective functions.

To further improve the search, if the chosen decision rule r (x) is monotone, we can
define an unfeasible node.

Definition 9 - Unfeasible node. Given a node with its related actions a and taken
decisions D, and given a monotone decision function r(e); the maximal achievable
action a* for this node is given by:

a; ifi e D
—x is
a; = . 3)
maxa;, otherwise

Given that, a node is unfeasible iff » (x + a*) < 1.

Theorem 1 Let a and D as in Definition 9. We want to prof that any action a : a; >
a;Vi ¢ D, is infeasible r(a) < t.

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

Proof Let’s suppose by contradiction that r(a) > T, since a* > a, we have, by
monotonicity of r(e) that r(a*) > r(a) > t, what contradicts r(a*) < 7. O

Notice that it is only possible to define a node as unfeasible if the decision rule
respects the monotone property. But when we have this property, we can preemptively
discard this node.

There are some guarantees that Algorithm 1 is capable of detecting all optimal
solutions and evaluating their time complexity.

Theorem 2 All Pareto-optimal solutions are found.

Proof We know that Algorithm 1 would search through all possible actions if no
pruning condition (lines 2, 5, and 8 in Algorithm 1) is activated. Any Pareto-optimal
solution a* : ¢(a*) < c(a), VYa € A would not be found iff the conditions in lines 2,
5, and 8 are activated by a* or a predecessor a < a*.

We can split the proof by contradiction into 3 cases:

— Line 2 would be activated if a predecessor a < a* is dominated by a feasible
solution a’ € A: ¢(a’) < c(a). This cannot be true since ¢(a’) < ¢(a) < c(a*)
would contradict the Pareto-optimally of a*.

— Line 5 would be activated if (x 4+ a*) < t. This cannot be true since a* < a*)
and it is a feasible solution.

— Line 8 would be activated if r(x + a) > t. This cannot be true because this
condition would indicate that a is feasible, and c¢(a) < c¢(a*) would contradict the
Pareto-optimally of a*.

Since all conditions led to a contradiction the proof is done. O
Theorem 3 The worst-case complexity of the algorithm is T (d, k) = O((bd)*), where
d is the number of variables, b is the maximum number of possible states of each

variable, and k is the maximal number of allowed changes.

Proof We can see the cost of each recurrence is given by:

dbT(d — 1,k —1)+db+d* k>0
T(d. k) = () +db + > @

1, k=0

By substitution we can see, for k > 0 that:

T(d, k) <dbT(d—1,k—1)+db+d? 5)
< db(b(d — 1)*=D 4 ab + d?, (6)
< bk —d)+db + d? 7
Given that, we can see that T (d, k) = O((bd)k). O

@ Springer

M. M. Raimundo et al.

A.2 Objective function properties

Since monotonicity is a requirement for the algorithm, in this section, we discuss some
properties of monotone functions and prove the monotone properties of the functions
used in the experiment.

Definition 10 Negative changes do not decrease the cost.

Defining a pair of actions b, and a. In which b have negative changes and a is
equivalent to b but with null action in such way: a,b :a; =0,b; < 0,Vj € J and
aj = bj, Vi ¢ j

The objective functions must be defined like that: cx (a) = cx(b), Yk € {1, ..., M}.

Theorem 4 Any feasible solution with negative changes has a correspondent feasible
action on monotone decision functions.

Proof Let’s suppose an action b : b; < 0 € J, that is feasible. By Definition 10, it is
possible to see that exists an actiona : a; =0,b; <0,V € Janda; =b;,Vi ¢ J
with the same cost.

By the monotonicity of r(e) it is possible to see that a is also feasible. O

Also, we want to show that using the j-th feature change for all features leads to
an enumeration of Pareto-optimal solutions that will contain any set of Pareto-optimal
solutions from other objective functions.

Theorem 5 Any Pareto-optimal solution for a vector of monotone objective functions
is a Pareto-optimal solution if we optimize the feature changes.

Proof Knowing that c(e) is the vector of functions for the j-th feature changes, and
¢/(e) is another vector of functions that are monotone.

Let’s assume, by contradiction, that a* is a Pareto-optimal for ¢’(e), and dominates
all other solutions. But a* is not Pareto-optimal for c(e).

From the lack of Pareto-optimality of a* in c(e), we assume that a feasible solution
a dominates a*, thus ¢;(a*) > ¢;(a), Vj € {1, ..., d}, meaning that a* > a (because
the objective are the actions it-selves).

From the Pareto-optimality of a* in ¢/(e) and dominates all other solutions, exists
k such that c; (a*) < c;(a). Since ¢ (e) is monotone c;(a*) > c;(a), we have a
contradiction. O

A.3 Monotone classifier’s properties

Another important trait that a classifier can have is its monotonicity. It helps in avoiding
branches with no feasible actions.

A.3.1 Logistic regression and SVM

The decision rules from Logistic regression and SVM can be formulated as p(x) =

H*IT% (SVM probability being formulated as in Platt Scaling). Assuming that
e X

0; > 0 for all i mutable (consequently a; = O for all j non-mutable).

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

Theorem 6 The decision function p(X) = is monotone.

1
1+e—9Tx+b
Proof Since a > 0:

1 1
14 e~ 07 (x+a)+b - 1+ e 0Tap—0T(0+b

®)

Since e=?'@ < [then e~ 8¢=0" 0+b < =0"x+b Consequently p(x +a) > p(x).
m}

A.3.2 Ensemble of monotone classifiers

Supposing an ensemble of classifiers p®* (x) = Zle u 'ng) where p’ (x) is monotone

foralli e {1,..., E}.

Theorem 7 The decision function p"* (x) is monotone.

Proof Let’s suppose X' > X. Given that:

p(x)>p'(x), Viell,..., E})
E E o
. .
pr’m > ng%x) (10)
i=1 i=1
P (x) = p(x) (11)
Proving that p**¥(e) is monotone. O

B Bounding procedure in a decision tree

The main goal of monotonicity for classifiers is to assess if the desired probability is
achievable in the subsequent branching in the B&B optimization. It is possible to obtain
that without enforcing monotonicity in decision trees. Each node in B&B constrains
the value of actions a; for all features i in the set of taken decisions D. With that, it is
possible to filter which leaves are reachable in the decision trees by the counterfactuals
on that node. Figure 13 shows an example of a decision tree. Let’s suppose that in the
search process, we already have a counterfactual antecedent with x; = 10, x5 = 1,

and x¢ = 60 but without enforcing any other variable. In this scenario, note @ has no
decision (x1 not chosen yet). Thus we can go to any branch. Node @ guides to node
@ that has no decision, thus guiding to leaves p; = 0.7 and p> = 0.2. Node @

guides to node @, thus guiding to leaf pg = 0.5. In this context, any other decision
in the counterfactual antecedents search will not find any probability higher than 0.7.
If the threshold 7 = 0.8, no counterfactual antecedent can achieve this goal; thus we
can bound the process. Thus, finding that no leaf in decision trees reaches the desired
probability can rule out the correspondent node in B&B optimization. We also use this
methodology to speed up the algorithm in the experiments.

@ Springer

M. M. Raimundo et al.

(Da1<05

(2)z2<16 (3)as <05

We We

(Was<6000 (5)aza<05 (6)as<12000 (7)a6 <45

Truﬂalse Truﬁalse Truﬁalse Truﬁalse

p1=07p2=02 p3 =09 ps =06 p5s =09 pg =0.0 pr =1.0 pg =0.5

Fig. 13 An example of a decision tree. The decision process occurs in the inner nodes that channel the
decision using the features x. The leaf nodes contain the probability of the samples that were channeled
to that leaf belonging to class 1 (e.g., a sample with x; = 0, xp = 20 and x4 = 1 falls into leaf 4 with a
probability of 60%, or ps = 0.6)

C Implementation details

It is crucial to notice that in all formalization of the method, all actions are additive
a > 0 to simplify the notation. However, it is possible to explore actions that can
subtract a value of sample x, and the objective functions and the decision functions
will handle only negative actions to sustain the monotone property.

Also, worth mentioning the actions must be discretized to work in the proposed
method [as well as other approaches (Ustun et al. 2019; Cui et al. 2015)]. To do so,
we used the same strategy as Ustun et al. (2019), where they discretize the actions
by making fixed steps between the lowest and largest values. For each feature in our
datasets, we use two strategies: (1) a fixed step size; and (2) a fixed number of steps.
Moreover, for decision tree-based classifiers, we used the same strategy as Cui et al.
(2015), where they discretize the space of a feature taking into account the splits of
the decision tree classifier. Thus, there is a change value for each space between the
splits for that feature, enumerating all actions to the decision trees

As previously mentioned, the procedure SELECT_FEATURE in Algorithm 1 is
responsible for indicating the next feature to be explored. To do that, we resorted to
variable importance from Random Forests (Breiman 2001) that randomly permute the
values of a feature and estimate the impact in the prediction to evaluate the feature
importance. We select an unexplored feature on a given node with higher priority to
find a counterfactual antecedent quickly.

Another implementation detail involves the modification presented in this work
to make mixed-integer models (Cui et al. 2015; Ustun et al. 2019) to generate
Pareto-optimal counterfactual antecedents. Given a model that finds a counterfac-
tual explanation (Cui et al. 2015; Ustun et al. 2019), the procedure in Algorithm 2
consists of iteratively finding counterfactual antecedents and adding constraints (lines
7 and 8) that counts (v) the number of objective components of action with a value
larger than a previously found antecedent a* and enforces it to be lower than the num-

@ Springer

Mining Pareto-optimal counterfactual antecedents with a...

Algorithm 2 Pareto-optimal procedure for mixed-integer formulations.

Require: A mixed-integer model builder build, a sample X, a objective function c(e), a decision rule r (o),
a threshold t, and a number of allowed changes k.

1: procedure ENUMERATE_MIP(model)

2. A=1{}

3

while model. feasible do

4 a* = model.optimize()

5 if model. feasible then

6: A= AU {a*}

7: v=li:ci(a)>ci@l), Vie{l,...,m}|
8: model.addConstr(v <m — 1)

9: end if

10: end while

11: return A

12: end procedure

13: model = build(x,¢,r, 1)
14: A =ENUMERATE(model)
15: return A

ber of objectives (v < m — 1). This procedure induces any subsequent optimization
of the model not to have any new action dominated by previously found antecedents.

References

Aggarwal CC, Chen C, Han J (2010) The inverse classification problem. J Comput Sci Technol 25(3):458-
468

Artelt A, Hammer B (2020) Convex density constraints for computing plausible counterfactual explanations.
In: International conference on artificial neural networks, Springer, pp 353-365

Breiman L (2001) Random forests. Mach Learn 45(1):5-32

Chen L, Lin X, Hu H, Jensen CS, Xu J (2015) Answering why-not questions on spatial keyword top-k
queries. In: Proceedings—international conference on data engineering, pp 279-290. https://doi.org/
10.1109/ICDE.2015.7113291

Chou YL, Moreira C, Bruza P, Ouyang C, Jorge J (2022) Counterfactuals and causability in explainable
artificial intelligence: theory, algorithms, and applications. Inf Fus 81:59-83

Cui Z, Chen W, He Y, Chen Y (2015) Optimal action extraction for random forests and boosted trees. In:
Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining,
association for computing machinery, New York, pp 179-188

Dua D, Graff C (2017) UCI machine learning repository-student performance

Gao Y, Liu Q, Chen G, Zheng B, Zhou L (2015) Answering why-not questions on reverse Top-k queries.
Proc VLDB Endow 8(7):738-749. https://doi.org/10.14778/2752939.2752943

Grath RM, Costabello L, Van CL, Sweeney P, Kamiab F, Shen Z, Lecue F (2018) Interpretable credit
application predictions with counterfactual explanations. arXiv preprint 1:1-9 arXiv:1811.05245

Gupta M, Cotter A, Pfeifer J, Voevodski K, Canini K, Mangylov A, Moczydlowski W, Van Esbroeck A
(2016) Monotonic calibrated interpolated look-up tables.] Mach Learn Res 17(1):3790-3836

Hada SS, Carreira-Perpifian MA (2021) Exploring counterfactual explanations for classification and regres-
sion trees. In: Joint European conference on machine learning and knowledge discovery in databases.
Springer, pp 489-504

He Z, Lo E (2012) Answering why-not questions on top-k queries. In: Proceedings—international confer-
ence on data engineering, pp 750-761. https://doi.org/10.1109/ICDE.2012.8

Judea P (2010) An introduction to causal inference. Int J Biostat 6(2):1-62

Kaffes V, Sacharidis D, Giannopoulos G (2021) Model-agnostic counterfactual explanations of recommen-
dations. In: Proceedings of the 29th ACM conference on user modeling, adaptation and personalization,
pp 280-285

@ Springer

https://doi.org/10.1109/ICDE.2015.7113291
https://doi.org/10.1109/ICDE.2015.7113291
https://doi.org/10.14778/2752939.2752943
http://arxiv.org/abs/1811.05245
https://doi.org/10.1109/ICDE.2012.8

M. M. Raimundo et al.

Karimi AH, Barthe G, Balle B, Valera I (2020) Model-agnostic counterfactual explanations for consequential
decisions. In: International conference on artificial intelligence and statistics. PMLR, pp 895-905

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) LightGBM: a highly efficient
gradient boosting decision tree. In: Advances in neural information processing systems 2017 (Nips),
pp 3147-3155

Krause J, Perer A, Ng K (2016) Interacting with predictions: visual inspection of black-box machine
learning models. In: Conference on human factors in computing systems—proceedings. Association
for Computing Machinery, New York, pp 5686-5697

Lawler EL, Wood DE (1966) Branch-and-bound methods: a survey. Oper Res 14(4):699-719

Lu Q, Cui Z, Chen Y, Chen X (2017) Extracting optimal actionable plans from additive tree models. Front
Comput Sci 11(1):160-173

Lucic A, Oosterhuis H, Haned H, de Rijke M (2019) Focus: flexible optimizable counterfactual explanations
for tree ensembles. arXiv preprint arXiv:1911.12199

Lv Q, Chen Y, Li Z, Cui Z, Chen L, Zhang X, Shen H (2018) Achieving data-driven actionability by
combining learning and planning. Front Comput Sci 12(5):939-949

Miettinen K (1999) Nonlinear multiobjective optimization. Springer, New York

Mothilal RK, Sharma A, Tan C (2020) Explaining machine learning classifiers through diverse counterfac-
tual explanations. In: Proceedings of the 2020 conference on fairness, accountability, and transparency,
pp 607-617

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825-2830

Poyiadzi R, Sokol K, Santos-Rodriguez R, De Bie T, Flach P (2020) Face: feasible and actionable coun-
terfactual explanations. In: Proceedings of the AAAI/ACM conference on Al, ethics, and society, pp
344-350

Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nat Mach Intell 1(5):206-215

Smith JW, Everhart JE, Dickson W, Knowler WC, Johannes RS (1988) Using the ADAP learning algorithm
to forecast the onset of diabetes mellitus. In: Proceedings of the annual symposium on computer
application in medical care. American Medical Informatics Association, p 261

Subramani S, Wang H, Balasubramaniam S, Zhou R, Ma J, Zhang Y, Whittaker F, Zhao Y, Rangarajan S
(2016) Mining actionable knowledge using reordering based diversified actionable decision trees. In:
Web information systems engineering—WISE 2016. Springer, Cham, pp 553-560

SylvaJ, Crema A (2004) A method for finding the set of non-dominated vectors for multiple objective integer
linear programs. Eur J Oper Res 158(1):46-55. https://doi.org/10.1016/S0377-2217(03)00255-8

Tolomei G, Silvestri F, Haines A, Lalmas M (2017) Interpretable predictions of tree-based ensembles
via actionable feature tweaking. In: Proceedings of the ACM SIGKDD international conference on
knowledge discovery and data mining part F1296, pp 465474

Ustun B, Spangher A, Liu Y (2019) Actionable recourse in linear classification. In: FAT* 2019—proceedings
of the 2019 conference on fairness, accountability, and transparency, association for computing machin-
ery, New York, pp 10-19

Wachter S, Mittelstadt B, Russell C (2018) Counterfactual explanations without opening the black box:
automated decisions and the GDPR. Harv J Law Technol 31(2):841-887

Wellawatte GP, Seshadri A, White AD (2022) Model agnostic generation of counterfactual explanations
for molecules. Chem Sci 13:3697

Yang Q, Yin J, Ling CX, Chen T (2003) Postprocessing decision trees to extract actionable knowledge. In:
Proceedings—IEEE international conference on data mining, ICDM 1, pp 685-688. https://doi.org/
10.1109/icdm.2003.1251008

Yang Q, Yin J, Ling C, Pan R (2007) Extracting actionable knowledge from decision trees. IEEE Trans
Knowl Data Eng 19(1):43-55

Yang C, Street WN, Robinson JG (2012) 10-year CVD risk prediction and minimization via inverse classifi-
cation. In: IHI’ 12—Proceedings of the 2nd ACM SIGHIT international health informatics symposium.
Association for Computing Machinery, New York, pp 603-609

Yang F, Alva SS, Chen J, Hu X (2021) Model-based counterfactual synthesizer for interpretation. In:
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp 1964—
1974

@ Springer

http://arxiv.org/abs/1911.12199
https://doi.org/10.1016/S0377-2217(03)00255-8
https://doi.org/10.1109/icdm.2003.1251008
https://doi.org/10.1109/icdm.2003.1251008

Mining Pareto-optimal counterfactual antecedents with a...

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

	Mining Pareto-optimal counterfactual antecedents with a branch-and-bound model-agnostic algorithm
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Background
	3.2 Model-agnostic Pareto-optimal counterfactual antecedents mining
	3.3 Objective functions
	3.4 Monotonicity on classifiers
	3.4.1 Enforcing monotonicity
	3.4.2 Dealing with non-monotone classifiers

	3.5 Counterfactual antecedent index

	4 Experiments
	4.1 Experiment 1: Pareto-optimal counterfactual antecedents
	4.1.1 Monotone classifiers
	4.1.2 Non-monotone classifiers

	4.2 Experiment 2: comparing correctness and performance
	4.2.1 Baselines
	4.2.2 Experiment 1: comparing performance on logistic regression
	4.2.3 Experiment 2: enumeration of Pareto-optimal counterfactual antecedents
	4.2.4 Experiment 3: comparing performance on non-monotonic classifiers
	4.2.5 Discussion

	5 Case study: enumeration of counterfactual antecedents for crimes in São Paulo
	6 Discussion and limitations
	7 Conclusion
	Acknowledgements
	Appendices
	A Proofs of the theorems
	A.1 Algorithm properties
	A.2 Objective function properties
	A.3 Monotone classifier's properties
	A.3.1 Logistic regression and SVM
	A.3.2 Ensemble of monotone classifiers

	B Bounding procedure in a decision tree
	C Implementation details
	References

