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Abstract—Over the past four decades, urban perception has
become a vital area of research that intersects multiple fields,
such as criminology, psychology, and urban planning. This
interdisciplinary approach seeks to understand and interpret how
people perceive urban environments and how these perceptions
shape their behavior. The surge in data collection methods,
driven by modern web technologies and services, has enabled
researchers to apply techniques from various domains to better
quantify and analyze urban perception. In this study, we present
the UrbanFormer, a vision transformer-based model, to address
the task of urban perception analysis, leveraging the widely-used
Place Pulse 2.0 dataset. Our focus is on the safety category, a key
issue in urban perception, while employing vision transformer
and explainability methods to provide insights into the decision-
making process behind perception analysis.

Index Terms—urban perception, urban computing, computer
vision, deep learning, street view images, human perception, built
environment

I. INTRODUCTION

Studies have shown that the visual aesthetics of urban en-
vironments strongly influence human perception and behavior
[13]. The “Broken Window Theory” [41] suggests that signs of
neglect, such as broken windows, graffiti, and litter, contribute
to negative social outcomes and higher crime rates. Currently,
with the advance of deep learning techniques and street view
imagery services, some studies gather data from websites
and online surveys to study urban perception, such as MIT
Media Lab’s Place Pulse “Which looks more safe?” [31],
scenic-or-not [36], “What makes London beautiful?” [30], and
City-SAFE [6]. Other research quantifies greenery, identifying
green areas and their influence on urban perception [16]. In
addition, some studies explore the relationship between vio-
lence levels, the presence of trees, and the human development
index [3], [29], as well as the correlation between graffiti
and perceptions of urban safety [14], [38]. Moreover, they
categorize cities based on the most common types of objects or
visual elements (e.g., trees, garbage, buildings, fences, graffiti)
and the associated perception of safety [21], [23]. Although
these studies analyze the visual appearance of cities and
correlate them with demographic factors, no one can explain
the behavior of human perception in street view images;
To address this challenge, this paper aims to investigate the
correlation between human perception of safety and the impact
of the visual appearance of urban visual environment on the
misperception of safety.

Contributions. This work introduces a novel approach
leveraging the OneFormer model for segmentation and a modi-
fied Vision Transformer (ViT) for classification to achieve high
performance in both binary and 10-label classification tasks.
Furthermore, we evaluate the importance of visual elements
within images by measuring the intersection over union (IoU)
between segmentation masks and model-generated explana-
tions, providing deeper insights into model interpretability and
feature relevance.

II. RELATED WORKS

Urban perception is a crucial area in urbanism and urban
planning. This research field aims not only to create highly
accurate prediction models [22], [33] but also to understand
the urban environment and its impact on residents [7], [40].
The main goal is to develop a model that maps a city’s
visual appearance and determines its uniqueness. For example,
“What makes Paris look like Paris?” [8], or “What makes
an outdoor space beautiful?” [36], or “What makes London
look beautiful, quiet and happy?” [30] Additionally, some
research incorporates other data, such as crime rates and
robbery statistics [3], [15], [35], or aims to map the impact
of graffiti in large cities and compares it with the human
development index [2], [38].

The MIT Media lab introduced a significant dataset in urban
perception, the MIT Place Pulse dataset [31]. This dataset
consists of comparisons between pairs of images across var-
ious categories (e.g., safety, liveliness, wealth). This research
aimed to perform urban mapping using urban perception
scores and to localize these scores within the target city [25],
[27]. Feature extractors such as GIST, DeCAF, and ImageNet
were used to train image representations along with their
respective perceptual scores [25], [47]. Other studies sought to
extract more detailed information about the visual appearance
of images using complex methods like convolutional neural
networks (CNNs) [10], [29] and analyzed greenery areas in
cities [16], [20]. Additionally, segmentation techniques have
been employed to analyze the presence of visual elements
and their correlation with safety perception [42], [45] or to
understand the relationship between model predictions and
human perception [17], [19], [21].



Fig. 1. (a) The proposed Urbanformer combines the OneFormer vectorized output with a modified ViT probability vector output to predict street human
perception between safe and unsafe. (b) Our explanation technique combines the segmentation mask and the Grad-CAM method to analyze the relationship
between safety perception and the presence of visual elements.

III. METHODOLOGY

Our methodology comprises three main steps: (i) urban
perception quantification; we begin with an exploratory data
analysis, quantifying urban perception scores derived from the
street images to gain insights from the data; (ii) classifier
model, Figure 1 (a) presents our proposed model called Urban-
Former. This model integrates the OneFormer segmentation
model with a modified Vision Transformer to classify the
perceived safety of street images; and (iii) model explanation,
Figure 1 (b) illustrates our explanation technique. We use a
class activation maps-based method to compute the intersec-
tion over union (IoU) between the segmentation mask from
OneFormer and the model explanations, enabling us to assess
the importance of each visual element.

A. Urban perception quantification

We study the MIT Place Pulse 2.0 dataset, composed of
approximately 1.22 million random comparisons between pairs
of 111,390 images, providing the image ID, latitude, longi-
tude, and the respective winner. We implement the algorithm
“strength of schedule” [28] to preprocess those comparisons.
For each comparison between images i and j in the category
k (e.g., safe), we define intensity of perception of the image i
as the percentage of times that the image was selected and is
affected by the intensity of the compared images j.
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The Equation 1 represents the perceptual score of image i,
referred to as the Q-score, and denoted Qi,k, within category
k. Here, Wi,k and Li,k represent the win and loss rates of
image i in category k. In addition, ni is the number of images
j that image i has won against, and mi is the number of
images j that image i has lost to. Finally, following previous
studies on visual assessment [26], [31], the perceptual score
Q is scaled to fit a range from 0 to 10, where an image with
a score close to zero is perceived as very unsafe, and a score

close to 10 is perceived as very safe. This scaling is achieved
by adding a constant value of 1 and multiplying by 10

3 .

B. UrbanFormer classifier

Figure 1 (a) shows our proposed classifier UrbanFormer,
which concatenates the probability vector of the perception
category extracted from the Vision Transformer (pre-trained on
ImageNet [9]) with semantic features obtained from the One-
Former segmentation model (pre-trained on ADE20K [12]).
We modify the ViT-B-16 model by adding 3 dense layers of
512, 512, and 1028, respectively. Then, we fused it with the
pixel ratios vector of size 150 obtained by the OneFormer
segmentation model. Then, we evaluate the output using the
cross-entropy loss with the logits function.

C. Model explanation

We correlate human perception and the presence of visual
elements in street images to explain predictions. For the
explanation of convolutional networks, saliency map-based
methods were widely adopted [24], [37], we select the Grad-
CAM [34] due to the better behavior and performance against
adversarial attacks or noise-adding techniques [1], [11]. Grad-
CAM (Equation 2) highlights important image regions for
model predictions by using target class gradients on the
final convolutional layer’s feature maps, followed by Global
Average Pooling (GAP) to compute neuron importance.
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Where δck represents the neuron importance weights, c is
the class, Z = u×v the size of the image, k is the kth feature
map, Ak

ij is the feature map, yc the score for class c, and
∂yc

∂Ak
ij

is the gradient vector obtained by backpropagation. We
assess the importance of visual elements by calculating the IoU
between the segmentation mask and CAM areas, identifying
object overlap percentages, and determining relevance based
on CAM values.



Fig. 2. We present the outputs of the Grad-CAM algorithm and the OneFormer output: (a) The top 3 safest and the top 3 less safe images, segmentation, and
Grad-CAM outputs. (b) The average impact of the top 12 visual elements with presence in almost 90% of the 108,820 images from the dataset. We obtain
this relevance by doing an IoU between the activations and the segmentation mask, where positive values correspond to safe predictions and negative values
correspond to no safe predictions.

IV. DISCUSSIONS AND RESULTS

This work presents a methodology for analyzing urban
perception using the MIT Place Pulse 2.0 dataset, focusing
on the prediction of safety categories. In addition, we analyze
the visual explanation using the Grad-CAM method to obtain
information about which visual elements are the most relevant.

A. Dataset exploration and preparation

We identified that 2,471 locations (samples with the same
latitude and longitude) have more than one ID assigned. For
example, in Santiago (Chile), we identify 130 repeat locations,
126 in Berlin (Germany), 112 in Montreal (Canada), and
so on. Lastly, Tel Aviv (Israel) and Seattle (USA) with 5
repeated locations, respectively. This repetition reduces the
total number of images evaluated from 111,390 to 108,820
images. In addition, we noted the imbalance of sample sizes
from different cities, e.g., Amsterdam has 622 images, while
Atlanta has 3,965 images. Thus, we use the entire dataset for
experiments, divided into 75% for training+validation and 25%
for testing. Although several works use MIT Place Pulse 2.0,
most of them perform regression tasks [5], [45] or pairwise
learning using SiameseNets [4], [17], in this study we perform
two classification experiments: (i) binary classification (safe
versus no safe) and (ii) 10-label classification, that is, scores
between 0-1 as label 0, 1-2 as label 1, and so on.

B. Model training and performance

We perform a classification task using the OneFormer
segmentation model fused with our adapted ViT-based model.
We initialize all weights using the Xavier uniform criteria and
freeze all encoder layers. We perform the experiments using
binary classification and 10-label classification. In addition,
we employed grid search 5-fold stratified cross-validation
on the training+validation set to maintain the proportion of
categories during training. Table I and Table II reports the
average classification metrics from five cross-validation runs
for our model, as well as for previous works that perform
classification tasks using either binary or 10-label approaches.
Notably, most of these works report only accuracy, disre-
garding other performance metrics. We report the results of
using the modified ViT only and fused with OneFormer,
showing that for the 10-label classification, only our ViT-
OneFormer has better performance. Further, we include the
AUC metric to demonstrate our model’s effectiveness and
robustness in correctly identifying and differentiating between
the categories.

C. Model explanations

Figure 2 (a) shows the 3 safest images and the 3 least
safe images. It also shows the segmentation mask and the
Grad-CAM obtained for the ground truth label (e.g., if the



TABLE I
ACCURACY REPORT USING BINARY CLASSIFICATION

Model Acc

PspNet+VGG [21] 48.38
DeepLabV3+VGG [21] 51.93
DSAPN+ResNet [43] 64.87
MTDRALN-LC [19] 65.07
MTDRALN-TC [19] 65.82
VGG+ImageNet [22] 65.72
VGG-GAP+ImageNet [22] 66.09
VGG+Places365 [22] 66.46
VGG-GAP+Places365 [22] 66.96
VGG19+ImageNet [4] 67.01
PSPNet+SVR [44] 70.63
DeiT+ResNet50 [32] 71.16

ViT-nn (Ours) 71.29
ViT-nn+OneFormer (Ours) 75.68

sample is safe, we calculate the Grad-CAM for the safe
prediction class). We set the Grad-CAM threshold at 0.3 to
keep relevant information, complement information, and avoid
irrelevant information [39]. We apply the Intersection over the
Union (IoU) method between the segmentation mask and the
Grad-CAM obtained. On average, Grad-CAM regions overlap
the most present visual elements, such as trees, buildings,
roads, sidewalks, walls, fences, earth, and the sky. These
visual elements are present in almost 96% of the 108,820
images on the dataset. Then, we assign a positive weight to
positive samples (e.g., safe images) and a negative weight
for negative samples. Figure 2 (b) shows the average impact
of the 12 most prevalent visual elements in the images. We
observed that IoU scores for trees, sidewalks, plants, fences,
and buildings have a stronger association with perceptions
of safety. Visual elements such as walls, dirt, and trashcans
appear more frequently in negative samples, suggesting their
presence is associated with unsafe streets. Of the 150 identified
visual elements, about 120 appear in less than 1% of images
(e.g., flowers, pots, pools), contributing a zero average impact
to this analysis. However, visual elements with high presence
and a zero mean average indicate relevance to both safe and
unsafe categories. In particular, the absence of these elements
is linked to an unsafe perception of the streets.

D. Limitations

We found that it is not possible to study specific cities;
this happens because comparisons were made randomly. In
addition, the number of image comparisons is not balanced;
most images were compared only three times, while others
were up to 78 times. Further, the number of images collected
per city is not proportional; we found cities with less than 600
images and cities with more than 3,500 images. In addition, af-
ter calculating the perceptual score, we obtained an imbalance
across classes in both binary and 10-label cases, which could
skew the model’s performance by favoring overrepresented
classes. Although data augmentation was applied, a more
balanced dataset could provide a more accurate representation
of the model’s ability to generalize across all classes.

TABLE II
ACCURACY REPORT USING 10-LABEL CLASSIFICATION

Model Acc

ResNet50 [18] 71.33
SegFormerB5+RF [46] 42.8
VGG19 [46] 75.2
ConvNeXt-B [46] 76.4
SFB5+ConvNeXt-B+RF [46] 78.1

ViT-nn (Ours) 74.97
ViT-nn+OneFormer (Ours) 78.68

Moreover, due to limited access to high-performance com-
putational resources, particularly GPUs and memory, the abil-
ity to run extensive fine-tuning and parameter tuning was
restricted. This limitation affected model training time, pre-
vented testing on larger model architectures, and constrained
batch sizes, potentially affecting the model’s generalization
performance. Additionally, limited resources restricted exper-
imentation with multiple configurations to identify optimal
hyperparameters. For experiments, data from all cities is
necessary to ensure good model performance. These situations
prevent the creation of a general model for all cities, as there
are not enough training samples or comparisons for each city.

V. CONCLUSIONS

In conclusion, this study applies Deep Learning tech-
niques—specifically semantic segmentation, classification
models, and the Grad-CAM explainer—to explore urban safety
perception. Semantic segmentation revealed spatial relation-
ships between objects within street images, while Grad-CAM
provided insights into their role in safety perception prediction.
Our analysis shows that objects like trees, cars, fences, the
sky, and buildings significantly influence safety perceptions,
though this may partly result from their prevalence in most
images. Our findings underscore the need for a nuanced
approach to understanding urban environments, suggesting that
future research should explore the contextual significance of
these objects beyond their mere presence. This work lays
the foundation for more informed urban planning and design
initiatives to enhance safety and improve the overall quality
of urban life.
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