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A B S T R A C T

Effectively analyzing spatiotemporal data plays a central role in understanding real-
world phenomena and informing decision-making. Capturing the interaction between
spatial and temporal dimensions also helps explain the underlying structure of the data.
However, most datasets do not reveal attribute relationships, requiring additional algo-
rithms to extract meaningful patterns. Existing visualization tools often focus either
on attribute relationships or spatiotemporal analysis, but rarely support both simultane-
ously. In this paper, we present STRive (SpatioTemporal Rule Interactive Visual Ex-
plorer), a visual analytics system that enables users to uncover and explore spatial and
temporal patterns in data. At the core of STRive lies Association Rule Mining (ARM),
which we apply to spatiotemporal datasets to generate interpretable and actionable in-
sights. We combine ARM with multiple interactive mechanisms to analyze the extracted
relationships. Association rules serve as interpretable guidance mechanisms for visual
analytics by highlighting the meaningful aspects of the data that users should investi-
gate. Our methodology includes three key steps: rule generation, rule clustering, and
interactive visualization. STRive offers two modes of analysis. The first operates at the
rule cluster level and includes four coordinated views, each showing a different facet of
a cluster, including its temporal and spatial behavior. The second mode mirrors the first
but focuses on individual rules within a selected cluster. We evaluate the effectiveness of
STRive through two case studies involving real-world datasets — fatal vehicle accidents
and urban crime. Results demonstrate the system’s ability to support the discovery and
analysis of interpretable patterns in complex spatiotemporal contexts.

© 2025 Elsevier B.V. All rights reserved.

1. Introduction1

Spatiotemporal data mining continues to pose significant2

challenges in real-world scenarios because relationships be-3

tween attributes often lack evident structure [1, 2, 3]. Due to4

their inherent complexity, visualization methods aimed at ex-5

ploring spatiotemporal phenomena increasingly benefit from6
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1Footnote 1.

user-guided mechanisms, which have gained prominence in vi- 7

sual analytics environments [4]. A notable guidance mecha- 8

nism is Association Rule Mining (ARM), which is widely em- 9

ployed to reveal meaningful relationships within datasets [5]. 10

ARM systematically extracts associations, clearly highlighting 11

co-occurrences and conditional relationships among variables. 12

Association rules provide effective suggestions or initial ex- 13

ploration points within visual analytics workflows, enabling 14

users to focus analyses on specific data aspects. Each rule ex- 15

plicitly defines relationships through “if-then” statements, clar- 16
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ifying the interactions between variables. Instead of initiating1

analyses from scratch or employing manual queries, analysts2

leverage these rules as preliminary hypotheses, accelerating3

their discovery processes. Furthermore, association rules offer4

greater interpretability than opaque models, such as neural net-5

works or ensemble methods, allowing analysts to comprehend6

underlying patterns without requiring intricate explanations.7

Although ARM demonstrates extensive applicability across8

various domains, its integration within spatiotemporal visual9

analytics faces considerable challenges. Generating large-scale10

association rules introduces computational complexities, and11

effectively visualizing these rules constitutes a significant hur-12

dle in spatiotemporal contexts.13

In this work, we present a novel methodology to address these14

challenges and uncover interpretable patterns in spatiotem-15

poral datasets. The approach applies association-rule min-16

ing to automatically detect significant patterns, which are then17

systematically organized into meaningful clusters. We imple-18

mented the methodology in a visual analytics system, STRive,19

which provides multiple coordinated views that facilitate the20

interactive exploration of these patterns using well-established21

visualizations. The system enables a structured drill-down anal-22

ysis, beginning with general trends and progressing toward de-23

tailed insights. STRive effectively directs analysts’ attention to24

critical areas of interest, enabling more focused and efficient25

exploration. STRive Interactive visualizations enable users to26

thoroughly investigate rule compositions, temporal dynamics,27

pattern comparisons, and spatiotemporal occurrences. By com-28

bining powerful computational methods with intuitive visual29

analytics, STRive significantly enhances analysts’ ability to in-30

terpret and gain actionable insights from spatiotemporal data.31

Our contributions are as follows:32

• A methodology using established algorithms for identify-33

ing and clustering temporal patterns.34

• STRive, an interactive visual analytics tool that signif-35

icantly improves exploration and interpretation of spa-36

tiotemporal datasets.37

• Two comprehensive case studies using real-world datasets38

that demonstrate significant findings, accompanied by39

clear and insightful explanations.40

2. Related Works41

Analyzing spatiotemporal data patterns is necessary for pub-42

lic safety, transportation, epidemiology, and environmental43

monitoring [1]. Visual analytics systems supporting this analy-44

sis typically use coordinated interactive views. For comprehen-45

sive reviews of these visualization techniques, see Liu et al. [6]46

and Mota et al. [7]. Unlike purely user-driven exploration, our47

method automatically identifies interpretable patterns first and48

then uses interactive visualizations for detailed analysis. This49

section reviews guidance in visual analytics, association rule50

visualization, and hypergraph representations.51

2.1. Guidance in Visual Analytics52

Guidance in visual analytics is “a computer-assisted process53

that actively resolves a knowledge gap encountered by users54

during an interactive visual analytics session” [8]. According 55

to Collins et al. [9], guidance supports analysts in identifying 56

and managing data patterns. They propose approaches for im- 57

plementing guidance, such as facilitating pattern extraction — 58

visually through effective representations or computationally 59

via suitable algorithms. They also emphasize guidance in pat- 60

tern evaluation, considering properties like frequency, intensity, 61

and rate of change. Several studies have introduced strategies 62

for selecting [4, 10, 11] and evaluating [9] guidance techniques, 63

underscoring their practical importance. 64

Numerous visual analytics systems have incorporated guid- 65

ance mechanisms. Doraiswamy et al. [12] propose a method 66

that uses topological features to identify events in scalar time- 67

varying data automatically. Their visual interface guides users 68

toward noteworthy events and supports similarity searches. Val- 69

divia et al. [13] represent data as graphs and apply graph 70

wavelet transforms to detect regions with significant variation, 71

identifying abrupt changes as important events. Liu et al. [14] 72

developed a workflow for pattern discovery and comparison, 73

utilizing tensor decomposition to recommend optimal data 74

slices and highlight patterns automatically. 75

Although these approaches successfully utilize algorithms to 76

guide exploration, the complexity of the underlying methods 77

may require users to exert additional effort to interpret the ex- 78

tracted patterns. 79

2.2. Association Rules in Visual Analytics 80

Association rules summarize interpretable relationships 81

within data and serve as effective guidance mechanisms. 82

Varu et al. [15] present a framework using an item-to-rule ma- 83

trix visualization. Items form rows, rules form columns, and 84

glyphs indicate antecedent-consequent relationships. Metrics 85

are visually represented through histograms aligned with rows 86

and columns. Menin et al. [16] utilize linked visualizations, in- 87

cluding scatterplots for rule metrics, chord diagrams for item 88

relationships, and association graphs for exploratory item anal- 89

ysis. Wang et al. [17] employ association rules to analyze spa- 90

tiotemporal climate data, discretizing continuous attributes for 91

effective analysis. Their approach integrates spatial context, en- 92

riching the analysis beyond attribute relationships alone. 93

Despite advances, existing visualizations for association 94

rules often lack sufficient contextual visualization, leading to 95

information loss. Fister et al. [18] provide a detailed critique 96

of these limitations. In contrast, our system STRive addresses 97

this limitation by embedding association rules within a rich spa- 98

tiotemporal framework. It enables users to analyze the rela- 99

tionships between attributes and when and where these patterns 100

emerge. 101

2.3. Hypergraph Representations 102

Association rules can be modeled using hypergraphs. In this 103

representation, items are represented as nodes, and rules are de- 104

fined as hyperedges that connect multiple nodes. Visualizing 105

such structures is challenging. Valdivia et al. [19] propose a 106

matrix-like visualization to display dynamic hypergraphs, with 107

nodes represented as rows and hyperedges as vertical lines con- 108

necting relevant nodes across time. Oliver et al. [20] develop 109
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polygon-based hypergraph visualizations using iterative sim-1

plification to optimize layouts. Additional node-link, timeline-2

based, and matrix-based visualization approaches are reviewed3

in Fischer et al. [21].4

Our work draws particularly from Valdivia et al. [19], adopt-5

ing their approach of representing ordered sets of hyperedges6

(rules) over time. We extend this method by encoding addi-7

tional contextual data to support comprehensive analysis.8

3. Background9

We now briefly present key concepts in Association Rule10

Mining (ARM). For a more detailed discussion on this topic,11

see Zhang and Zhang [22] and Nath et al. [23]. Agrawal et12

al. [5] first introduced ARM as a data mining method to uncover13

frequent associations between variables in a dataset. Let D de-14

note the dataset, and capital letters (e.g., X,Y) represent subsets15

of D. Following Kisilevich et al. [24], we focus on spatiotem-16

poral (ST) event datasets. Each entry in the dataset is a point17

in space-time, defined as p = (locationp, tp, attribp), where18

attribp is a vector of additional attributes. To apply ARM, we19

assume all components, including location and time, are cate-20

gorical. When necessary, we discretize geographic coordinates21

into administrative regions (e.g., countries or states) and time22

into intervals such as months or years.23

ARM expresses relationships as association rules in the form24

r := X ⇒ Y , where X is the antecedent (Ante(r)) and Y is25

the consequent (Cons(r)). A rule states that if X appears, then26

Y is likely to follow. For instance, in a sales dataset, the rule27

{Bread,Co f f ee} ⇒ {Milk} suggests that customers who buy28

bread and coffee often also buy milk. Although originally ap-29

plied to market basket analysis [5], researchers now use ARM in30

other domains such as traffic accident analysis [25], electronic31

health records [26], and microblogging text analysis [27].32

The ARM process begins by identifying frequent itemsets,33

i.e., values that commonly appear together. Algorithms like34

Apriori [28] and FP-Growth [29] perform this task. From these35

itemsets, the algorithm generates association rules by splitting36

the itemsets into antecedent and consequent parts. To evaluate37

the quality of the generated rules, ARM uses several metrics:38

For example:39

• Support [5] measures how often an itemset appears in the40

dataset: sup(X) = |X|/|D|. For a rule, sup(X ⇒ Y) =41

sup(X ∩ Y).42

• Confidence [5] estimates the probability of Y appearing43

when X is present: con f (X ⇒ Y) = |X ∩ Y |/|X|.44

• Lift [30] measures the strength of the association by compar-45

ing the joint probability of X and Y to their expected proba-46

bility if independent: li f t(X ⇒ Y) = sup(X ∪ Y)/(sup(X) ×47

sup(Y)).48

These metrics help identify meaningful rules; however, set-49

ting appropriate threshold values can be challenging. ARM al-50

gorithms often generate a large number of rules [31], which can51

overwhelm the analysis process.52

Low thresholds may capture rare but important patterns, es-53

pecially in critical datasets. For example, in a dataset of 1,00054

crime incidents, a minimum support of 0.1 requires at least 10055

matching incidents to retain a rule. Lowering the threshold in- 56

creases coverage but also inflates the number of rules. The best 57

threshold values and choice of metrics vary by application. In 58

this context, interactive visualization plays a key role. It allows 59

analysts to explore different thresholds and evaluate rules dy- 60

namically. 61

Our approach builds on these foundations to support the anal- 62

ysis of spatiotemporal data with ARM. We utilize association 63

rules to automatically extract relevant patterns. These patterns 64

serve as guidelines that facilitate the visual exploration process. 65

Unlike black-box models, association rules provide transparent 66

and interpretable insights that are directly tied to the dataset’s 67

attributes. 68

4. System Overview 69

This section outlines the design methodology of our sys- 70

tem. We describe the system requirements, analytical tasks, and 71

overall workflow implemented in STRive. 72

4.1. System Requirements 73

To guide users toward meaningful and explainable patterns, 74

we define key design requirements for STRive. These require- 75

ments are based on a review of interactive visual analytics for 76

spatiotemporal pattern discovery and our team’s prior research 77

experience. 78

• Analyze relationships among attributes. Understanding 79

how attributes co-occur can uncover hidden patterns. Due 80

to the numerous possible attribute combinations, users ben- 81

efit from automated techniques that identify frequent asso- 82

ciations. ARM supports this task by identifying recurring 83

combinations in the dataset [32, 31]. 84

• Identify temporal trends and spatial patterns. Detecting 85

how patterns evolve over time and space is essential for un- 86

derstanding trends and anomalies. Interactive visualizations 87

help users observe when and where association rules appear 88

[18]. 89

• Manage a large number of association rules. ARM often 90

produces many rules, making interpretation difficult. Cluster- 91

ing and summarization techniques simplify exploration and 92

help users compare patterns more easily [33]. 93

The first two requirements align with long-established goals 94

in spatiotemporal visualization research, whereas the third ad- 95

dresses specific limitations inherent to applying ARM in this 96

context. 97

4.2. Analytical Tasks 98

Based on the system requirements, we define the main ana- 99

lytical tasks supported by STRive. These tasks help users dis- 100

cover patterns, observe temporal and spatial concentrations, de- 101

tect shifts over time, and explore results interactively. 102

• T1. Attribute, date, and algorithm configuration. The 103

system should offer controls to select attributes of interest, 104

define a time range, set thresholds for rule measures (e.g., 105

support, lift), and configure clustering granularity. 106
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Fig. 1. STRive workflow. (a) The user provides a dataset of interest, selects relevant attributes, sets up minimum thresholds for rule generation and defines
clustering parameters. (b) The system generates rules and clusters based on the user’s configuration and computes their metrics. (c) Finally, users explore
the generated patterns through six visual components, organized into two views.

• T2. Rule and cluster composition comparison. The user1

should be able to compare common associations at the cluster2

level and explore attribute differences at the rule level in a3

unified view.4

• T3. Temporal behavior analysis. The system should5

display the frequency of each rule and cluster over time6

slices. This helps detect recurring trends and unusual time-7

dependent behaviors.8

• T4. Spatial distribution analysis. The user should be able9

to examine the spatial distribution of rule and cluster occur-10

rences to understand where specific patterns emerge.11

• T5. Rule and cluster ordering. The system should organize12

rules and clusters based on the similarity of their temporal13

patterns.14

• T6. Cluster metric display. The system should present key15

cluster metrics — such as rule count, average support, and16

average confidence — in one layout to simplify performance17

comparison.18

4.3. Workflow19

Figure 1 illustrates the system workflow. Users begin by up-20

loading a dataset in CSV format, which includes temporal and21

location fields, as described in Section 3. The tool accepts up-22

loading datasets with multiple categorical attributes, provided23

they contain both a DATE column (formatted as YYYY-mm-dd)24

and a PLACE column. Users must also upload a GeoJSON file25

to render the locations specified in the PLACE field. The place26

names in the GeoJSON file must exactly match the values in the27

PLACE column so that aggregated data displays correctly. After28

both files are loaded, users select the attributes to be used for29

generating association rules. Records with null or ‘Unknown’30

values in selected columns are discarded to prevent meaning-31

less associations. When attributes contain many distinct values,32

users should group similar values to reduce complexity. For in-33

stance, they can categorize vehicle models into broader types34

such as SUVs, sedans, or trucks. This improves rule genera-35

tion by increasing support levels. Next, users define the anal-36

ysis time range and set thresholds for support and lift. They37

also configure a resolution parameter for clustering, explained38

in Section 5.39

The system then extracts and clusters association rules (Fig-40

ure 1.b). It filters records by the selected time range and divides41

the data into time slices. For each slice, the system generates42

rules using the specified configuration. It removes duplicate 43

rules that appear across slices and applies clustering to the com- 44

bined rule set. Section 5 details the rule generation, deduplica- 45

tion, and clustering steps. Finally, users explore the patterns 46

through STRive’s interface (Figure 1.c). The interface includes 47

coordinated views for analyzing clusters and drilling down into 48

individual rules. Section 6 describes the interface components 49

and interactions. 50

5. Association Rule Mining and Clustering 51

A key feature of our system is the drill-down analysis capa- 52

bility. Users begin with an overview of rule clusters and then 53

proceed to a detailed exploration of individual rules. This sec- 54

tion describes the processes of generating and clustering asso- 55

ciation rules. 56

Our system utilizes the FP-Growth algorithm for ARM due 57

to its computational efficiency compared to alternatives, such 58

as Apriori. Users typically set thresholds, such as minimum 59

support and lift, to discard irrelevant rules. 60

Our primary goal is to identify spatiotemporal patterns us- 61

ing ARM. To incorporate temporal information, we divide the 62

dataset into multiple time slices, as detailed in Section 4.3, and 63

generate rules separately for each period. Generating rules for 64

the entire dataset may highlight global trends but can miss im- 65

portant time-specific patterns. By examining rules across mul- 66

tiple slices, we track their evolution over time. 67

However, two key challenges can complicate the visualiza- 68

tion and interpretation of these temporal rules. First, small tem- 69

poral shifts in data can generate superfluous rules — rules dif- 70

fering only by attribute placement between antecedent and con- 71

sequent. For example, it is common to generate rules such as 72

the following three: 73

{A, B,C} ⇒ {D}

{A, B} ⇒ {C,D}

{A, B,D} ⇒ {C}

Though semantically distinct, these rules share the same sup- 74

port. To reduce redundancy, we retain only the rule with the 75

highest mean lift from each group of similar rules. Second, 76

even after this reduction step, the number of generated rules 77
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Fig. 2. STRive interface with annotated components from the first case study. (A) Control Panel – allows users to select attributes and configure rule
thresholds. (B) Attributes View – displays the composition of each cluster. (C) Heatmap View – reveals the temporal behavior of clusters across time slices.
(D) Map View – shows the spatial distribution of rule clusters. (E) Cluster Scatterplot – provides a summary of cluster performance based on rule metrics.
(F) Mode Selector – allows to change between cluster-level and rule-level modes.

may remain large and difficult to visualize effectively. To han-1

dle this, we cluster rules into semantically coherent groups. We2

use the similarity metric from Fister et al. [34], defined as:3

Sim(r1, r2) =
|Ante(r1) ∩ Ante(r2)| + |Cons(r1) ∩ Cons(r2)|
|Ante(r1) ∪ Ante(r2)| + |Cons(r1) ∪ Cons(r2)|

This metric evaluates rule similarity based on common at-4

tributes in antecedents and consequents. We build a complete5

similarity graph, where nodes represent rules and edge weights6

reflect the degree of similarity between rules. For clustering,7

we employ the Louvain algorithm [35], a greedy, agglomerative8

method effective in detecting communities without predefined9

cluster counts. Preliminary tests confirmed its superior clus-10

ter coherence and computational efficiency performance. The11

Louvain algorithm includes a resolution parameter that controls12

cluster granularity: lower resolutions yield fewer, larger clus-13

ters, while higher resolutions create more numerous, smaller14

clusters. Users can adjust this parameter based on their anal-15

ysis needs. The resulting clusters serve as the basis for initial16

data exploration, providing meaningful groupings that simplify17

further analysis.18

6. The STRive System19

STRive is a novel visualization tool designed to support in-20

teractive visual analysis of spatiotemporal data via association21

rules. It comprises seven interactive components organized in22

two windows (the main interface is shown in Figure 2) designed 23

to support the design tasks described in Section 4.2. Some com- 24

ponents support two modes, cluster-level and rule-level, which 25

can be toggled using the buttons located in the top-right cor- 26

ner of the interface (Figure 2.F). These modes adjust the views 27

to accommodate different levels of detail. We describe each of 28

these components in the rest of this section. 29

Control Panel. The Control Panel (Figure 2.A) provides 30

options for configuring the rule generation and clustering pro- 31

cesses (T1). Users can import a spatiotemporal dataset and se- 32

lect the relevant attributes to be considered for rule generation. 33

Additionally, the panel allows the user to specify starting and 34

ending dates for rule generation. To explore diverse clustering 35

configurations, the panel includes an input field for adjusting 36

the resolution parameter of the clustering algorithm, enabling 37

users to control the size of the resulting rule clusters. 38

Attributes View. After users configure the rule-generation and 39

clustering parameters in the Control Panel, the resulting rule 40

clusters appear in the Attributes View (Figure 2.B). The design 41

adapts the ARMatrix visualization by Varu et al. [15] and ex- 42

tends the work of Valdivia et al. [19] with additional informa- 43

tion. Each row represents one cluster (T2, T5), and each col- 44

umn corresponds to an attribute–value pair found in the rules. 45

Within a row, a circle marks the presence of an attribute; its 46

radius encodes the frequency with which that attribute occurs 47

across the cluster’s rules, while its fill color distinguishes an- 48

tecedent attributes (white) from consequent attributes (black). 49
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In rule-level mode, the view switches to display individual rules1

rather than clusters: each row now represents a single rule, the2

column layout is unchanged, and all circles have equal size3

because a given attribute can appear only once within a rule.4

Users can interact with the Attributes View by selecting a clus-5

ter, which updates the Map View to display the occurrences sat-6

isfying the rules per location. Clicking on a specific cluster7

also makes the Attributes View and Heatmap View eligible for8

switching to rule-level mode, allowing users to inspect the in-9

dividual rules within that cluster if they choose to activate it.10

Heatmap View. The Heatmap View (Figure 2.C) depicts the11

temporal evolution of the records that satisfy each rule cluster12

(T3). Rows represent clusters, columns represent time inter-13

vals, and cell colour encodes the record count, making temporal14

trends easy to spot. Clusters with similar temporal signatures15

are placed adjacent to one another, and the row order is shared16

with the Attributes View; scrolling in either view keeps the other17

in sync.18

The view also supports a rule-level mode. When a cluster19

is selected, each row switches to an individual rule while the20

columns continue to denote time intervals. The cell color now21

indicates how often that rule is satisfied in each period. This22

finer granularity complements the Attributes View by directly23

linking rule structure to temporal behavior, while maintaining24

the same row order and linked scrolling for a cohesive explo-25

ration experience.26

Map View. The Map View (Figure 2.D) depicts the spatial dis-27

tribution of records captured by the generated clusters (T4).28

After rule generation and clustering, the map initializes at the29

spatial resolution defined by the dataset’s geographic attribute.30

Each location is shaded with a sequential color scale that en-31

codes the total number of occurrences observed at that location.32

By default, the map aggregates occurrences from all clusters,33

providing an overview of the entire dataset. Selecting a cluster34

in the Attributes View filters the map to display only that clus-35

ter’s occurrences, revealing its distinctive spatial footprint. The36

view is tightly linked to the Heatmap View: clicking a time label37

in the heatmap restricts the map to the chosen interval. If a clus-38

ter is selected, the filter becomes the intersection of the cluster39

and the period; otherwise, the map shows occurrences from ev-40

ery cluster within that period. In rule-level mode, the design41

and interactions remain unchanged, but the focus shifts to in-42

dividual rules. Selecting a rule in the Attributes View updates43

the map to display its corresponding occurrences, and time fil-44

tering continues to operate via the heatmap, allowing users to45

track how each rule’s spatial pattern evolves.46

Cluster Scatterplot. To facilitate easy comparison of cluster47

performances, the Cluster Scatterplot (Figure 2.E) provides an48

overview of cluster-level metrics (T6). Each dot in the scat-49

terplot represents a cluster, and two metrics determine its posi-50

tion. By default, the X-axis shows the number of rules within51

a cluster, and the Y-axis displays the mean lift of the cluster.52

Customization of the scatterplot can be done by clicking on ei-53

ther axis label, which will display a dropdown menu listing ad-54

ditional metrics: mean number of occurrences, mean support,55

and mean confidence. Upon selecting a different metric, the56

scatterplot is redrawn to reflect the updated metrics. Additional57

Fig. 3. STRive LLM explanation panel. The component uses the
gemini-2.0-flash model to generate multiple hypotheses explaining the
selected rule and searches the internet for supporting sources.

interaction between views was implemented: selecting a cluster 58

in the Attributes View highlights its corresponding point in the 59

scatterplot, while selecting a point in the scatterplot highlights 60

the respective cluster in the Attributes View. This enables the 61

joint analysis of cluster composition and cluster metrics. This 62

component is only available in cluster mode, as its purpose is to 63

compare general properties across clusters. 64

LLM Explanation Panel. The LLM Explanation Panel (Fig- 65

ure 3) employs a large-language model (gemini-2.0-flash) 66

to generate contextual explanations for a selected rule. After 67

users select a rule in the Attributes View, they can refine the 68

scope by choosing specific regions on the map or particular 69

time intervals. If no additional selection is made, the system 70

defaults to the three locations with the highest rule frequency 71

and the full date range. Pressing the Explain button sends this 72

context as a prompt (see Appendix B.1) to the LLM, which 73

returns hypotheses, pattern descriptions, and links to relevant 74

external sources such as news articles. The resulting insights 75

are displayed in the panel. This component is available only in 76

rule-level mode, where such fine-grained explanations are most 77

useful. 78

Implementation details. The system was implemented us- 79

ing Python, JavaScript, and HTML. The backend was built us- 80
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Fig. 4. Example rule from Cluster 1 involving the attributes Drunk, Lit Condition, and Weather. During the summer months, accidents characterized
by daylight, clear weather, and non-drunk drivers tend to concentrate in California and Texas (A, B, and C). In contrast, during the winter months, such
accidents increase notably in Florida (D, E, and F).

ing Flask 2, the mlxtend 3 library provided the rule generation1

algorithms, and for clustering, the Louvain algorithm was im-2

plemented using the networkx library. On the client side, the3

interface was developed with HTML and JavaScript. The visu-4

alizations were implemented using D3.js 4 and Leaflet 5. The5

reorder.js library was used to reorder the rows in the Attributes6

View and Heatmap View components, based on the occurrences7

per time slice. In the present implementation, the algorithms8

for rule generation and clustering are fixed. Nevertheless, the9

preprocessing pipeline is modular, so replacing it is straightfor-10

ward: users need only update the relevant module’s function11

calls, provided the new algorithms emit output in the same for-12

mat. All source code will be released on GitHub to ensure full13

reproducibility.14

7. Case Studies15

We present two case studies to demonstrate STRive’s capa-16

bilities for analyzing association rules.17

7.1. Analyzing Seasonal Patterns in Vehicular Accidents18

Our first case study explores factors related to fatal vehicu-19

lar accidents. We use the Fatality Analysis Reporting System20

(FARS) dataset [36], which contains detailed records of fatal21

accidents in the United States. Given the dataset’s extensive22

nature, we select only relevant attributes and rename them for23

2https://flask.palletsprojects.com
3https://github.com/rasbt/mlxtend
4https://d3js.org
5https://leafletjs.com

clarity. The list of attributes and their descriptions is provided 24

in Appendix A. 25

We analyze data from 2016 to 2022. Our goal is to un- 26

derstand how weather, public illumination, and driver intoxi- 27

cation (attributes: Weather, Lit Condition, Drunk) relate 28

to fatal accidents. After removing null and ‘Not Reported’ 29

values, we split the data into monthly segments, each with 30

approximately 2,000 accidents. We set the minimum sup- 31

port at 0.05, minimum lift at 1.05, and cluster resolution 32

at 1. The resulting clusters contain 2, 4, and 6 rules. Fig- 33

ure 2.B highlights the two clusters with more occurrences 34

(Cluster 1 and Cluster 2). Cluster 1 involves clear weather 35

(Weather:Clear), daylight (LitCond:Day), and non-drunk 36

drivers (Drunk:No). Cluster 2 includes clear weather, dark con- 37

ditions (LitCond:Dark-Lit and LitCond:Dark-Unlit), and 38

non-drunk drivers (Drunk:No). 39

These associations help analyze the role of lighting condi- 40

tions in fatal accidents. The Cluster Scatterplot (Figure 2.E) in- 41

dicates both clusters have reliable associations (mean lift > 1). 42

Cluster 1 has a higher average support than Cluster 2, meaning 43

its described conditions occur more frequently. The Heatmap 44

View (Figure 2.C) shows monthly occurrences. Cluster 1 peaks 45

from May to August, while Cluster 2 increases from October 46

to January. Although Cluster 1 has generally higher occur- 47

rence rates, both clusters show clear seasonal peaks. The re- 48

maining rows show temporal behaviors involving drunk drivers 49

(Drunk:Yes). The significant difference between Clusters 1 50

and 2 is lighting conditions. This suggests that lighting has a 51

greater influence on fatal accidents than driver intoxication — 52

the remaining clusters involving similar conditions and drunk 53

drivers have fewer occurrences. We further analyze individual 54

rules within these clusters. 55

This indicates a spatial shift in the distribution of rules. 56

https://flask.palletsprojects.com
https://github.com/rasbt/mlxtend
https://d3js.org
https://leafletjs.com
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Fig. 5. Rule from Cluster 2 describing nighttime accidents under unlit conditions. The state of Texas consistently appears as one of the most affected
regions, with notable peaks in incident counts during October (A, B, and C).

Fig. 6. Two clusters selected for analysis. (A) Cluster composition. (B) Cluster temporal behavior.

Selecting Cluster 1, we examine daytime accidents (Lit1

Condition:Daylight). We set the tool to rule-level mode by2

clicking on the Rules button (Figure 2, F). The components in3

the rule-level mode mirror their counterparts in the cluster-level4

mode, allowing us to visually identify the rule structure and in-5

spect their temporal and spatial behavior. Figure 4 illustrates the6

temporal pattern of the rule {LitCond:Day, Weather:Clear} ⇒7

{Drunk:No}, confirming a summer peak. Filtering data for June,8

July, and August, the Map View reveals that most accidents oc-9

cur in California and Texas (Figure 4.A–C). Conversely, se-10

lecting December and January shifts the highest incidence to11

Florida (Figure 4.D–F). This shift aligns with reports indicating12

an increase in winter travel to Florida due to milder weather,13

which increases the flux of people traveling to the state, causing14

the number of vehicle accidents to rise [37, 38, 39]. Next, we15

explore nighttime accidents from Cluster 2. Figure 5 shows the16

rule {LitCond:Dark-Unlit, Weather:Clear} ⇒ {Drunk:No}. Ac-17

cidents peak consistently in October. Spatial analysis reveals18

that Texas consistently has high accident rates this month (Fig-19

ure 5.A–C). This observation aligns with official reports stating20

that October is particularly deadly for pedestrians in Texas due21

to reduced daylight [40]. 22

7.2. Analyzing Crimes in Chicago 23

Our second case study explores factors related to crime in- 24

cidents in Chicago. The data comes from the Chicago Po- 25

lice Department’s CLEAR (Citizen Law Enforcement Analysis 26

and Reporting) system [41]. This dataset includes date, loca- 27

tion, crime type, and arrest status. For our analysis, we select 28

records from 2016 to 2019. We focus on examining the rela- 29

tionship between crime types and locations (attributes: Type 30

and Location) and the timing of incidents (attribute: Time). 31

After preprocessing to remove null and “Not Reported” entries, 32

we segment data monthly, resulting in approximately 17,000 33

to 25,000 incidents per month. Given the large dataset, we 34

set minimum support and lift thresholds at 0.01 and 1.5, re- 35

spectively, to capture meaningful associations. We also set the 36

clustering resolution parameter at 2.5 to achieve more refined 37

clusters. 38

Figure 6.A displays the resulting clusters. Our analysis fo- 39

cuses on two clusters, specifically Cluster 3 and Cluster 4. 40

Cluster 3 includes rules involving multiple crime types that 41
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Fig. 7. Two example rules from Cluster 4. The top row (A, B, C, and D)
shows the spatial distribution of thefts occurring in parks. The bottom
row (E, F, G, and H) shows the spatial distribution of thefts on residential
porches and in hallways.

Fig. 8. Spatial distribution of different crime types. (A) Map showing
the distribution of battery incidents. (B) Map showing the distribution of
narcotics-related offenses.

occur primarily on sidewalks (Location:SIDEWALK), mostly1

during the afternoon (Time:afternoon) and nighttime hours2

(Time:night). Cluster 4 consists exclusively of theft in-3

cidents (Type:THEFT) across various locations (see attribute4

Locations. These clusters stand out due to their distinct sea-5

sonal trends (see Figure 6.B). Cluster 3 has the most incidents6

and exhibits clear seasonality, with peaks in the summer. Clus-7

ter 4 also demonstrates seasonality, though weaker, with notable8

spikes.9

We first examine Cluster 4 to understand the seasonal spikes.10

The cluster contains rules describing thefts at locations such11

as parks, residential porches and hallways, and grocery stores12

(Figure 6.A). A detailed temporal analysis (Figure 7) reveals13

that thefts on porches and hallways peak during December and14

January, likely due to increased online shopping and unattended15

deliveries during the holidays. Conversely, thefts in parks spike 16

notably in July and August, despite being relatively rare. Spatial 17

analysis identifies the Loop district, specifically Beat 0114, as 18

the primary location for these park thefts (Figure 7.A–D). Grant 19

Park, within Beat 0114, hosts the Lollapalooza festival during 20

peak theft periods, explaining the spikes in theft incidents dur- 21

ing these months (July 28–31, 2016; August 3–6, 2017; August 22

2–5, 2018; August 1–4, 2019). 23

Next, we examine the rules in Cluster 3, with a focus on 24

sidewalk-related incidents. The cluster prominently features 25

battery incidents on sidewalks (see rule on Figure 8.A). Exam- 26

ining narcotics offenses on sidewalks reveals high incident con- 27

centrations in West Garfield Park, Humboldt Park, and Austin 28

(see rule on Figure 8.B). These areas are known for gang ac- 29

tivity and drug-related issues, aligning with reports indicating 30

they account for approximately 30% of Chicago’s emergency 31

drug-related calls [42]. 32

The different treatments of time and location in the two case 33

studies stem from differences in the underlying datasets. In 34

the crime dataset, location is already provided as a categor- 35

ical attribute (e.g., “sidewalk”), and time can be discretized 36

into broad periods such as morning, afternoon, and evening; 37

both attributes can therefore be included in rule generation. By 38

contrast, the vehicular-accident dataset offers richer contextual 39

variables — such as speed limit, road type, and light condi- 40

tion — while its geographic information is limited to continu- 41

ous coordinates, which are not suitable for direct ARM. Conse- 42

quently, the vehicular-accident case study concentrates on those 43

categorical road-context attributes instead. In both studies, spa- 44

tial and temporal information is employed mainly in the analy- 45

sis phase to contextualize the resulting rules. 46

8. Expert Feedback 47

To further evaluate our system, we conducted semi- 48

structured interviews with domain experts, focusing on its us- 49

ability and usefulness. This section describes the participants’ 50

backgrounds, the interview methodology, and the main find- 51

ings. 52

8.1. Participants’ Backgrounds 53

We invited two computer science experts, each with over 20 54

years of experience in data analysis. One specializes in data vi- 55

sualization, and the other in data mining; both have extensive 56

hands-on experience with ARM in their research. Their com- 57

bined expertise, therefore, spans the principal areas on which 58

our system is built. 59

8.2. Interview Process 60

We conducted separate one-hour semi-structured interviews 61

with each expert. We began by introducing the class of datasets 62

targeted by STRive and outlining the main steps of the method- 63

ology—rule generation, rule clustering, and metric computa- 64

tion. Next, we demonstrated the interface in detail, explaining 65

how each component supports insight discovery. We then pre- 66

sented our case studies and provided a link to a live demo pop- 67

ulated with the same data, allowing the experts to explore the 68
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tool hands-on. Finally, each expert completed a questionnaire1

that captured their views on the methodology, the system’s use-2

fulness and usability, and potential areas for improvement.3

8.3. Results4

Below, we summarize the main feedback obtained during the5

interviews.6

Methodology. When asked, “What is your opinion of the pro-7

posed methodology for mining spatiotemporal patterns?”, both8

experts described the approach as compelling and pointed to the9

accompanying use cases as persuasive examples. One expert10

observed that the current framework could not capture more11

complex temporal structures and recommended extending it to12

support sequential rule mining [43]. The other expert noted13

that analysts rarely begin exploration with the entire rule set14

produced by an ARM algorithm; instead, they typically start15

with a specific hypothesis — for example, requiring a given at-16

tribute to appear in the consequent — and then investigate the17

factors that lead to that outcome. Although STRive does not18

yet support this workflow, it could be implemented by filtering19

the generated rules for user-specified attribute values. We plan20

to incorporate this capability in the next version of the system.21

Usability. In response to the questions “Was the system easy22

to use?” and “Do you believe people will learn how to use23

this system quickly?”, both experts reported that the interface24

is straightforward and the visualizations are intuitive. They25

cautioned, however, that their considerable experience with26

association-rule mining may influence this impression — and,27

in one case, specifically with ARM visualization. When asked28

whether setting the initial parameters or selecting attributes for29

rule generation was difficult, both replied that the process was30

simple. One expert noted that the evaluation datasets contained31

relatively few attributes, making the checkbox selection effec-32

tive; with larger datasets, the same approach might become a33

usability bottleneck.34

Usefulness. In response to “Do you consider STRive a use-35

ful tool, and why?”, both experts affirmed its utility. One36

highlighted that STRive is especially compelling when patterns37

emerge in specific regions during specific time frames, where38

it could support decision-making — for instance, helping poli-39

cymakers address pedestrian incidents in October in Texas. He40

remarked: “The main benefit I see is STRive’s capacity to ab-41

stract data into simple, interpretable patterns that are otherwise42

very difficult to extract. In scenarios where such abstraction is43

acceptable, the tool can indeed be very useful.”44

The second expert echoed this view and emphasized the45

value of visualizing incidents that satisfy the rules across re-46

gions and over time. He expressed interest in being able to47

switch the displayed metrics (e.g., showing lift instead of the48

number of occurrences) in both the Heatmap and Map views,49

as well as in supporting multiple temporal resolutions (e.g.,50

weekly) in the Heatmap.51

Both experts felt that all components are important for the52

analyses shown in the case studies; none was judged more crit-53

ical than the others. They specifically praised the LLM ex-54

planation panel, noting that it substantially enhances the inter-55

pretability of the discovered patterns.56

Limitations. Asked about potential shortcomings, the 57

first expert observed that datasets with hundreds of at- 58

tributes—common in spatiotemporal analysis—could over- 59

whelm the interface and that rules containing many attributes 60

may impose a high cognitive load. He stressed, however, that 61

these challenges are intrinsic to association-rule mining rather 62

than unique to STRive. The second expert reiterated scalability 63

concerns and pointed out the potential loss of interpretability 64

when clustering rules. He acknowledged, though, that cluster- 65

ing is necessary to manage the large rule sets and to enable fo- 66

cused, drill-down exploration. 67

Overall, the expert evaluation confirmed STRive’s ease of use 68

and practical value while highlighting its limitations and sug- 69

gesting directions for future improvement. 70

9. Discussion and Future Work 71

As shown in Section 7, STRive enables users to effectively 72

identify and analyze spatiotemporal data patterns. This section 73

discusses the current workflow, limitations, and future direc- 74

tions for improving STRive. 75

Use of clustering algorithms: We currently use the Louvain 76

algorithm to create coherent rule clusters. After evaluating mul- 77

tiple methods, Louvain demonstrated superior results in terms 78

of cluster quality, parameter flexibility, and computational effi- 79

ciency. However, Louvain is non-deterministic, meaning differ- 80

ent runs may produce varying clusters. As the clustering step 81

plays a major role in our workflow, this variability can hinder re- 82

producibility and complicate analyses. Future implementations 83

could include alternative clustering methods with user-defined 84

parameters. Additionally, extending clustering to incorporate 85

spatial and temporal rule distributions could provide more com- 86

prehensive insights. 87

Interactive rule modification: Currently, STRive supports rule 88

comparison based on spatial and temporal attributes. Allow- 89

ing users to add or remove attributes within rules dynamically 90

would provide more direct rule manipulation. This feature 91

could guide initial exploration and reveal additional patterns de- 92

rived from user-modified rules. 93

Computational Scalability: Our current implementation can 94

handle moderately sized datasets with diverse spatiotemporal 95

attributes; however, it is not specifically optimized for “big- 96

data” workloads. Computational bottlenecks primarily arise in 97

the rule-extraction and clustering phases. These bottlenecks can 98

be mitigated in several ways, as both tasks are well-studied. 99

For instance, more sophisticated algorithms for rule mining 100

and clustering could significantly improve STRive’s scalabil- 101

ity [44, 45, 46]. 102

Visual Scalability: The present implementation of the 103

Heatmap and Attributes views does not scale well as the num- 104

ber of time slices or data attributes grows. This limitation can 105

be alleviated by incorporating filtering — for example, focus- 106

ing on specific periods or attribute subsets — and by adopting 107

focus–plus–context techniques [47]. We plan to integrate these 108

strategies in the next version of the system. 109

Visual Encoding Enhancements: Further work on visual en- 110

codings may help improve spatial interpretation by using glyphs 111
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Conversation 9.1:

User: There was an increase in thefts in parks on the
following dates: July 2016, August 2017, August 2018,
and August 2019 in the Loop district in Chicago. Do
you know any possible causes?

ChatGPT: The increases in thefts in Chicago’s
Loop district parks during July 2016, August 2017,
August 2018, and August 2019 can be attributed to
several factors:
1. Large Summer Events: Major festivals, such as Lol-
lapalooza, held annually in late July or early August in
Grant Park, draw substantial crowds...
2. Seasonal Crime Patterns: Warmer summer months
often correlate with increased crime rates...
3. Resource Allocation Challenges: Large events re-
quire significant police presence, which can strain re-
sources and potentially leave other areas more vulnera-
ble...
4. Public Transit Crime: There have been instances of
increased crime on Chicago’s public transit during sum-
mer months...
These factors combined likely contributed to the
observed increases in park thefts during the specified
periods.

User: Can you provide the exact dates and loca-
tions of the Lollapalooza festival?

ChatGPT: Lollapalooza is an annual music festi-
val held in Chicago’s Grant Park. Here are the exact
dates for the years you inquired about:

• 2016: July 28–31.

• 2017: August 3–6.

• 2018: August 2–5.

• 2019: August 1–4.

Each year, the festival spans four days, attracting large
crowds to Grant Park in Chicago, Illinois.

to show the distribution of attributes within each region on the1

map. This could make it easier to spot local variations that are2

not visible through aggregate values alone.3

Pattern explanation support: While our system identifies sig-4

nificant patterns, fully understanding their underlying causes5

often requires external context. Leveraging large language6

models (LLMs), such as ChatGPT-4o, proved beneficial for7

obtaining explanations in our first case study. For example,8

we asked about theft increases in Chicago parks during spe-9

cific dates. ChatGPT-4o effectively identified factors such as10

major events and seasonal crime patterns contributing to this11

phenomenon. A partial interaction transcript appears in Con-12

versation 9.1. While STRive already utilizes LLMs to generate 13

contextual explanations and surface relevant external informa- 14

tion, future enhancements could offer even more sophisticated 15

guidance — for instance, helping analysts interpret visualiza- 16

tions and automatically highlighting potential patterns revealed 17

by the system. 18

Rule causality: Although association rules can appear to ex- 19

press causal relationships, they in fact capture only frequent co- 20

occurrences in the data. This limitation is inherent to ARM, so 21

additional analysis—such as the interactive exploration offered 22

by our system—is essential for identifying the rules that matter 23

most. Users can refine the search by specifying attributes that 24

must appear in the antecedent, the consequent, or both, thereby 25

steering the mining process toward patterns that align with do- 26

main knowledge. Moreover, rule directionality plays a minor 27

role in our workflow because we use lift — a symmetric metric 28

independent of rule direction — as the principal filtering crite- 29

rion. 30

10. Conclusion 31

This paper introduces STRive, a visual analytics system that 32

utilizes Association Rule Mining (ARM) as a guidance mecha- 33

nism for exploring spatiotemporal data. STRive leverages the 34

FP-Growth algorithm to extract association rules and groups 35

these rules into coherent clusters using the Louvain algorithm. 36

The system provides users with interactive linked visualizations 37

by computing rule metrics over time and spatial distributions. 38

Our work demonstrates that ARM effectively reveals mean- 39

ingful patterns, significantly aids users in navigating complex 40

spatiotemporal datasets, and inherits the ease of interpretation 41

of these patterns. This feature is very much required in modern 42

systems. The case studies validate the practical usefulness of 43

ARM-based guidance, illustrating its ability to uncover insight- 44

ful and interpretable relationships in real-world scenarios. 45

In future work, we plan to conduct a user study to formally 46

evaluate the usability and effectiveness of STRive. Addition- 47

ally, we aim to integrate large language models (LLMs) to au- 48

tomatically generate explanations for the discovered patterns, 49

further enhancing the system’s interpretability and utility. Fi- 50

nally, our system focuses on spatiotemporal event data [48]. 51

Other forms (such as trajectories) pose different analytical tasks 52

and pattern types, which may call for sequential or trajectory- 53

aware rule-mining techniques [43]. Extending STRive to sup- 54

port these data, therefore, represents a promising avenue for 55

future research. 56
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Appendix A. Fatality Analysis Reporting System (FARS)1

dataset2

The FARS dataset includes a wide range of attributes related3

to different aspects of fatal vehicle accidents. In our analysis,4

we retain only a small subset of these attributes. Table A.15

presents the selected attributes and their descriptions.6

Attribute Description
Id Unique identifier for the accident.

Date Date of the accident.
State State where the accident happened.

Drunk
Indicates whether one of the involved

drivers was drunk.

Lanes
Number of lanes of the road where the

accident occurred.

Speed
Maximum speed limit of the road where

the accident occurred.

Surface
Status of the road surface at the time

of the accident (e.g. Dry or Wet).

Lit Condition
Status of the public illumination at the

time of the accident (e.g. Dark - Lighted,
Dark - Not Lighted or Daylight).

Pavement
Type of pavement of the road where the

accident occurred (e.g. Asphalt).

Level
Inclination of the road where the

accident occurred (e.g. Level or Uphill).

Align
Alignment of the road where the

accident occurred (e.g. Straight or Curve).

Junction
Accident location in relation to

its proximity to junction or interchange
areas (e.g. Intersection or Driveway Access).

Weather
Atmospheric conditions at the

time of the accident (e.g. Clear or Rain).

Season
Season of the year when the accident
occurred (e.g. Summer or Winter).

Region
Region where the accident

occurred (e.g. Midwest or South).

Table A.1. Attributes found in the FARS dataset.

It is important to note that attributes such as Season and Re-7

gion are not originally present in the data; they were derived8

from the Date and State attributes and added by us.9

Appendix B. Prompt Used for LLM Explanations10

Appendix B.1 outlines the prompt used to generate expla-11

nations. Note that the text in bold highlights elements specific12

to the dataset in use. This prompt differs from the one in the13

Discussion section, as it is automatically generated from raw14

data, whereas the other was manually written after identifying15

the main pattern.16

Prompt Appendix B.1

Here we have an association rule, describing a pattern
found in a vehicular accidents dataset. Each element
in the antecedent or consequent is an attribute–value
pair.

Antecedent: {LitCond:Daylight, Weather:Clear}
Consequent: {Drunk:No}

Location:Florida
2016-01: 27
2016-02: 44

...

Location:Texas
2016-01: 61
2016-02: 52

...

Tasks:
1. Identify trends both in time and space.
2. Formulate a couple specific hypotheses explaining
the identified behavior.
3. Search the internet for information sources to vali-
date your hypothesis.
3. Use the Google Search tool to find specific news
articles, reports, and studies
4. Provide actual working URLs, not placeholder
URLs.
If no information was found, just return the hypothesis
and description.
Output the findings as a JSON list of dictionaries with
the following format (strictly valid JSON only):
{

”hypothesis”: ””,
”description”: ””,
”sources”: []
}

Output each source as a JSON dictionary with title and
URL:
{

”title”: ””,
”url”: ””
}
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