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Abstract—This research investigates the application of vision-
language models to automatically assess and rate street view
images based on the Place Pulse 2.0 dataset, with a focus on
comparing Al-generated ratings with human evaluations. The
study introduces a context-sensitive rating system that assigns a
0-10 scale to six key urban perception categories: safety, liveliness,
wealth, beauty, boredom, and depression. By comparing these Al-
generated ratings with those of human volunteers, the research
explores how effectively vision-language models can replicate
human judgment in assessing urban environments. The findings
provide valuable insights into the potential of vision-language
models to scale urban perception analysis, offering an objective
methodology that complements and enhances human evaluation.
This approach not only contributes to urban planning by enabling
more efficient, data-driven decision-making but also enriches the
Place Pulse 2.0 dataset by integrating machine-generated ratings,
paving the way for future advancements in urban perception
studies.

Index Terms—Vision-Language Models, Urban Perception, AI
Rating System, Human Evaluation, Urban Planning.

I. INTRODUCTION

Urban studies increasingly emphasize public perception,
where subjective assessments of factors like safety, liveliness,
and beauty influence urban planning and design [46], [56],
[60]. Among these, safety perception has long been a central
concern [31], [33], [35]. Early urban sociology, particularly
the Broken Windows Theory [50], posits that visible signs of
disorder, such as broken windows, contribute to a perceived
lack of safety, leading to increased crime and environmental
degradation [13], [39]. This theory has inspired numerous
studies that expand on these ideas, linking physical environ-
ments to perceptions of crime and safety, and emphasizing how
subjective safety experiences influence behavior and quality of
life [21], [32], [45].

In recent years, the use of street view imagery (SVI)
services has enabled researchers to collect data on human
evaluations of urban perception through online platforms such
as StreetScore [31], Wmodi [1], UrbanGems [36], Scenic-
or-not [44], SenseCityVity [41], Places for play [14], and
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City-SAFE [5], among others. However, traditional methods
of collecting these perceptions—primarily through human
surveys or volunteer-based ratings—can be time-consuming,
limited in scope, and difficult to scale [6], [S6]. One prominent
framework for capturing urban perception is the Place Pulse
2.0 dataset [9], [31], [38], which categorizes urban spaces
across six key perception categories: safety, liveliness, wealth,
beauty, and their opposites (e.g., not depressing, not boring).

Additionally, the rise of machine learning methods has
spurred numerous studies, including studies using SVI with
crime records [10], [47], graffiti presence [15], [48], demo-
graphic factors [4], [19], emotional perceptions [26], [29],
landscape scenicness and beauty [36], [44], and deep learning-
based approaches to estimate the winner between image com-
parisons [9], [25]. Recent advancements in vision-language
models (VLMs) like LlaVA [18], BLIP-2 [17], CLIP [37],
and SigLIP [53] have shown great potential in bridging visual
content and natural language understanding. By leveraging
large-scale datasets of images paired with textual descriptions,
these models enable human-like comprehension of visual data,
opening new possibilities for applications in urban perception.

Contributions This research explores the use of vision-
language models for image caption generation, aiming to
categorize and rate street view images. Our contributions are
as follows: (i) We propose a methodology to leverage the
benefits of vision-language models for describing, rating, and
classifying street view image perception. (ii) We evaluate the
impact of incorporating image descriptions and contrastive
learning into urban perception tasks by using vision-language
models across six urban perception categories. (iii) We develop
an Urban Vision-Language Model (UrbanVLM), which unifies
street view images, contextual information, and descriptions to
achieve accurate predictions of human perception ratings. For
supplemental material and source code !.

Uhttp://www.visualdslab.com/papers/Urban VLM



II. RELATED WORKS

A. Urban Perception and Computer Vision

Urban perception plays a key role in urbanism and planning,
focusing not only on creating accurate prediction models [28],
[41] but also on understanding the urban environment and
its effects on residents [7], [49]. The primary goal is to
develop models that capture a city’s visual identity and de-
fine its uniqueness. Questions like “What makes Paris look
like Paris?” [8], “What makes an outdoor space beauti-
ful?” [44], “What makes London appear beautiful, quiet, and
happy?” [36], and “What makes a place feel safe?” [27] are
central to this research. Additionally, some studies incorporate
supplementary data, such as crime and robbery statistics [2],
[43].

The MIT Media Lab introduced a significant dataset in
urban perception, the MIT Place Pulse dataset [31], [38]. This
dataset inspired researchers to map urban perception scores,
and feature extraction techniques such as GIST, DeCAF, and
ImageNet were used to train image representations along with
their respective perceptual scores [31], [33]. Other studies
have sought to extract more detailed information about the
visual appearance of images using complex methods, such as
convolutional neural networks (CNNs) [9], [35]. Additionally,
segmentation techniques have been employed to analyze the
presence of visual elements and their correlation with safety
perception [51], [57] or apply explanation methods to under-
stand the relationship between model predictions and human
perception [25], [30].

B. Multimodal Models in Urban Perception

Although previous studies have applied computer vision
techniques to urban analysis, including the addition of infor-
mation such as text captioning using LSTM [23] and BERT
[22], or combining street view images with comments obtained
from social networks (e.g., Twitter) [42]. Recent research has
begun leveraging multimodal models (see Appendix A for
definition). For instance, some studies employ models like
Siamese networks and GPT-4V to compare SVI and rank them
[59]. [24] compares the visual appeal and functionality of
streets using the GPT-4 model alongside human evaluations.
Similarly, [12] utilizes the CLIP model to infer urban street
functionality through zero-shot learning. Furthermore, [16]
builds on the Scenic-or-Not dataset [44], [58], extending it
with manually added image annotations to infer scenicness
using the CLIP model.

However, our work stands out by leveraging an ensemble
of vision-language models to integrate image-text generation
with urban perception evaluations. Using designed prompts,
we generate descriptions that capture visual appearance de-
scriptions, then fine-tune them alongside images with multi-
modal models. This approach enables robust classification of
urban perception in street view imagery (SVI), aligning model
predictions with human evaluations to provide deeper insights
into urban spaces.

III. METHODOLOGY

Our methodology is composed of the following steps: (i) hu-
man evaluations quantification; we begin with an exploratory
data analysis, quantifying urban perception scores derived
from the human evaluations; (ii) image descriptions gener-
ation, by using vision-language models we design prompts
to obtain insights from the visual appearance of the image
evaluated; (iii) UrbanVLM, this model integrates an image-
text generation model and a contrastive language-image model
to classify the perceived safety of street images.

A. Human evaluations quantification

We study the MIT Place Pulse 2.0 dataset, which con-
tains approximately 1.22 million pairwise comparisons across
111,390 images from 56 cities, including image IDs, coordi-
nates, and the respective winners. Following previous works,
we focus our evaluation on the safety category. To preprocess
comparisons and assign perceptual scores to each image,
we apply the “strength of schedule” algorithm [34], which
estimates the Q-score using the win rate and loss rate for each
image with pairwise comparisons from the following equation:
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In the Equations 1 to 3, wf, df, and lf represent the number
of times image ¢ has been selected as the winner, equal, or
loser respectively; ni and no represent the number of times
image ¢ wins and loses a comparison; Award is the average
win rate where image ¢ won the comparison; Penalty is the
average loss rate where image ¢ lost the comparison. The final
Q-score is scaled to fit a range from O to 10, where an image
with a score close to zero is perceived as very unsafe, and a
score close to 10 is perceived as very safe [31], [32], [38].

Additionally, unlike previous works, we conduct a data
exploration analysis and find that about 2,471 coordinates have
multiple image IDs, indicating repeated comparisons at the
same duplicated location and leading to sample imbalances
across cities (see Appendix B).

B. Street view imagery captioning

Since Place Pulse 2.0 lacks volunteer information (e.g.,
gender, age, location, nationality) and images have no descrip-
tions, we extended it by generating captions for the 111,390
images using vision-language models, referred to as image
descriptions. Our goal is to assess how these descriptions
enhance Al-driven urban perception. We use and compare
BLIP-2 and LLaVA to generate two types of descriptions:
(i) visual appearance and (ii) evoked feelings (e.g., safety,
boredom, depression). BLIP was also evaluated but produced
lower-quality descriptions. See Appendix D for prompt details.
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Fig. 1. Our proposed UrbanVLM multimodal model comprises four main components: (i) image description generation using a vision-language model with

freeze layers except for the visual projections such as LlaVA and BLIP2, (ii) dual-modality encoding using vision-text encoding models such as CLIP or
SigLIP, (iii) contrastive learning to align image-text descriptions, and (iv) classification and regression heads to infer the urban perception labels and scores.

C. UrbanVLM

We present UrbanVLM, a multimodal framework for urban
perception, using the Place Pulse 2.0 dataset to classify and
regress the perception of street view images. Our approach
leverages large pre-trained models for image description gen-
eration (LLaVA and BLIP-2) and contrastive learning (CLIP
and SigLIP).

As illustrated in Figure 1, UrbanVLM consists of four
stages: (i) Image description: images are processed through a
text generation model; (ii) Dual-modality encoding: images
and descriptions are embedded into a shared latent space
and either combined or used for contrastive training; (iii)
Contrastive image-text alignment: the contrastive model
identifies which description better matches the image; and
(iv) Classification and regression: the model is fine-tuned
for binary classification (e.g., safe vs. unsafe) and perception
score regression (0—10 scale).

Mathematical Formulation

Let D = {(I;,y:)}}Y, denote the dataset, where: I; €
RHXWX3 i the i-th image and the label y; € [0,10] (for
regression) or y; € {0, 1}(for classification).

We use a vision-language model function f,i,, to generate an
intermediate visual encoding V; € RV and the corresponding
textual description 7; € R (L is the token length), where
TZ-Jr means a positive description and 7; means a negative
description.

Then, for each tuple of (I;, T;", T; ), we generate encodings
using a contrastive model. The encodings are f; and f;. Where
fi(I;) € R™ is the image encoding and f;(7;") and f,(T,") €
R™ are positive and negative encodings. The objective is to use
contrastive learning to learn a shared representation between
the image and the two descriptions (positive and negative),

and then use classification learning to predict the label (’safe”
or “not safe”) based on the image and descriptions, following
a similar approach for regression.

Contrastive learning: To align the image and text encod-
ings, we apply contrastive loss (InfoNCE loss), which ensures
that related image-text pairs are close together in the shared
latent space, while unrelated pairs are far apart. The contrastive
loss is given by:
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Where sim(f;, f;) = Hfﬂﬁ is the cosine similarity and 7
is a temperature parameter that controls the smoothness of the
softmax function with a value of 0.07.

Classification task: We use the shared representations from
image and text encodings to predict the label. The image
and text encodings are concatenated and passed through a
classification head, which outputs a probability distribution
over the two classes. The classification loss is computed using
the cross-entropy loss function:
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Regression task: We predict the continuous perception
scores using the concatenated image-text encodings and the
original continuous values ¢;. The regression loss is computed
using the mean squared error (MSE):
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TABLE I
ACCURACY REPORT USING BINARY CLASSIFICATION IN SAFE CATEGORY

Model Acc
PspNet+VGG [29] 48.38
DeepLabV3+VGG [29] 51.93
DSAPN+ResNet [54] 64.87
MTDRALN-LC [25] 65.07
MTDRALN-TC [25] 65.82
VGG+ImageNet [28] 65.72
VGG-GAP+ImageNet [28] 66.09
VGG+Places365 [28] 66.46
VGG-GAP+Places365 [28] 66.96
VGG19+ImageNet [4] 67.01
PSPNet+SVR [55] 70.63
DeiT+ResNet50 [40] 71.16
ViT-nn [27] 71.29
ViT-nn+OneFormer [27] 75.68
UrbanVLM (L1aVA+SigLIP)  82.55

Total Loss Function: The total loss function is a weighted
sum of the contrastive loss, classification loss, and regression
loss:

Etolal = Ecomraslive + )‘Classﬁclass + )\regﬁreg

where Acpass and A are hyperparameters controlling the
contribution of each loss.

IV. EXPERIMENTS & DISCUSSIONS

In this section, we conduct extensive experiments to inves-
tigate the following Research Questions (RQ):

e RQI1: Can UrbanVLM outperform previous baseline
methods (classification and regression)?

o RQ2: How does each component (e.g., image-text gener-
ation and contrastive learning) contribute to UrbanVLM?

e RQ3: How does automated text generation impact the
results?

A. Experimental settings

We incorporate two widely used open-source multimodal
models, LlaVA (llava-1.5-7b) and BLIP-2 (blip2-opt), avail-
able from Huggingface, to generate diverse and descriptive
textual representations of street view images, focusing on
features relevant to urban perception.

For contrastive learning, we use CLIP with a ViT-B/32
backbone and SigLIP with the SoViT-400m architecture. For
all experiments, the dataset is split into 75% for training and
validation and 25% for testing. Experiments are conducted on
an NVIDIA RTX 3090 GPU with limited VRAM. To optimize
training, we use floatl6 precision, freeze lower layers, and
fine-tune only the higher layers, including the classification
and regression heads.

B. RQI: Performance evaluation

To validate the effectiveness of the proposed UrbanVLM,
we compare its performance with that of previous models.
Table I reports the binary classification accuracy for the safe
category. Notably, most prior work reports only accuracy,
disregarding other performance metrics. As shown in the

TABLE II
REGRESSION RESULTS IN SAFE CATEGORY

Model R? RMSE
PSPNet-Regressor [55] 0.25 -
Fine-Tuned BERT [22] 0.42 -
FPN-based regressor [20] 0.52 -
DeepLabV3+ regressor [20] - 2.16
DeepLabV3+ regressor [52] - 291
SFB5+ConvNeXt-B+RF [60]  0.67 1.29
VIT+SegFormer+RF [11] 0.76 1.75
UrbanVLM (L1aVA+CLIP) 0.84 1.04

table, UrbanVLM significantly surpasses baseline methods
employing single-granularity models, achieving substantial im-
provements. It outperforms the best baseline, [27], by 6.87%.
Table II reports the R? and RMSE metrics, which are the
most commonly used regression metrics in previous studies.
We observe that UrbanVLM outperforms the best prior model
[11] by 0.08 in R?. These results demonstrate that multi-
granularity approaches generally outperform single-granularity
models. This improvement can be attributed to the incorpo-
ration of fine-grained information derived from street view
image descriptions, which enriches the learning process.

C. RQ2: Ablation studies

We conduct ablation studies to investigate the effectiveness
of different components in UrbanVLM on the Place Pulse
dataset safety category, including text generation, contrastive
methods, and their absence. Specifically, we evaluate the
performance of training the visual projections in the text
generation model, the contrastive method, and both combined.
In Table III, the term zero-shot indicates that we first generate
descriptions for images and test the model without any addi-
tional training; here, CLIP and SigLIP are used for inference.
For this purpose, we use LLaVA and BLIP-2 to generate
image descriptions and define zero-shot prompts to infer the
perceptual score and the corresponding category (e.g., safety,
boring) of the street view images. See Appendix E for more
details about these prompts.

The term w/o description & contrastive refers to Dual-
modality encoding, which indicates that we use the generated
descriptions and concatenate the image-text encodings to train
the classification and regression heads, as well as the image
and description token projections, without fine-tuning the text
generation or contrastive learning components. The term w/o
contrastive & dual-modality refers to the Visual projections
of the text generation model, which means that we do not
perform any contrastive learning on the encodings, nor do we
train the projections (i.e., image and description tokens).

The term w/o description & dual-modality refers to the
absence of description generation and dual-modality encoding.
In this setup, we focus solely on training the image-text
alignment for contrastive learning to determine the best match,
and only the classification and regression heads are trained.

The term only heads means that we only train the classifica-
tion and regression heads. Finally, the term UrbanVLM refers



TABLE III
ABLATION STUDY ON URBANVLM PLACE PULSE DATASET

Ablation Model Classification Regression
Study Tested Acc  Precision Recall F-1 R? RMSE MAE
Zero-shot CLIP 0.39 0.41 0.39 0.24 | -14.05 453 4.89
SigLIP 0.57 0.43 0.57 045 | -14.17 4.61 4.77
Only heads LlaVA+CLIP 0.67 0.67 0.66 0.66 0.57 243 2.56
W/o description, contrastive & dual-modality | LlaVA+SigLIP 0.66 0.66 0.67 0.66 0.56 243 2.68
BLIP-2+CLIP 0.63 0.61 0.62 0.61 0.53 34 321
BLIP-2+SigLIP | 0.64 0.63 0.63 0.63 0.53 3.38 3.35
Contrastive LlaVA+CLIP 0.7 0.69 0.68 0.68 0.62 1.81 1.95
W/o description & dual-modality LlaVA+SigLIP 0.71 0.71 0.7 0.7 0.61 1.98 1.84
BLIP-2+CLIP 0.68 0.67 0.68 0.67 0.56 275 2.35
BLIP-2+SigLIP | 0.69 0.68 0.69 0.68 0.55 2.68 2.2
Visual projections LlaVA+CLIP 0.73 0.72 0.71 0.71 0.67 1.69 1.73
W/o contrastive & dual-modality LlaVA+SigLIP 0.72 0.72 0.71 0.71 0.65 1.68 1.71
BLIP-2+CLIP 0.7 0.7 0.69 0.69 0.59 1.95 2.06
BLIP-2+SigLIP | 0.71 0.71 0.7 0.7 0.59 1.88 1.94
Dual-modality LlaVA+CLIP 0.76 0.76 0.75 0.75 0.78 1.33 1.42
W/o description & contrastive LlaVA+SigLIP 0.75 0.75 0.74 0.74 0.75 1.29 1.51
BLIP-2+CLIP 0.72 0.72 0.73 0.72 0.69 1.6 1.34
BLIP-2+SigLIP | 0.73 0.73 0.72 0.72 0.68 1.4 1.21
UrbanVLM LlaVA+CLIP 0.82 0.78 0.77 0.77 0.84 1.04 0.78
LlaVA+SigLIP 0.83 0.79 0.78 0.78 0.83 1.08 0.79
BLIP-2+CLIP 0.77 0.76 0.77 0.76 0.76 1.32 1.15
BLIP-2+SigLIP | 0.76 0.78 0.77 0.76 0.75 1.26 1.01

to the training of all components: visual projection, image and
description tokens, contrastive learning, and heads.

Table III provides a detailed analysis of the impact of
various techniques on performance across both classification
and regression tasks. The results indicate that integrating
contrastive learning into the heads leads to an average im-
provement of 3% in classification accuracy. This enhancement
is accompanied by significant improvements in regression met-
rics, highlighting the versatility of this approach. Furthermore,
incorporating visual projections from text generation yields a
substantial 6% average improvement in classification accuracy,
suggesting that these projections help capturie richer features
from the multimodal data. The most pronounced improvement,
however, comes from the dual-modality approach, which leads
to a 9% average increase in accuracy across both tasks, under-
scoring the value of combining visual and textual information
for improved model performance.

In terms of task-specific performance, contrastive learning is
found to particularly benefit classification tasks when used in
conjunction with SigLIP, thereby enhancing the model’s ability
to distinguish between classes. On the other hand, CLIP excels
in regression tasks, as evidenced by its superior performance in
these metrics. Interestingly, the relationship Root Mean Square
Error (RMSE) ~ Mean Absolute Error (MAE) suggests that
the model’s errors are likely distributed more uniformly, rather
than being influenced by large, skewed outliers.

When examining the optimal model combinations for spe-
cific tasks, we observe that LlaVA+SigLIP performs best
for classification tasks, suggesting that the fusion of these
two components provides the most effective model for dis-
tinguishing between different classes. For regression tasks,
however, L1aVA+CLIP outperforms all other configurations,
highlighting the particular strength of this combination in

predicting continuous values.

D. RQ3: Qualitative analysis

To evaluate the effectiveness of the captions generated by
UrbanVLM, we performed a qualitative analysis by compar-
ing the descriptions produced by BLIP, BLIP-2, and LlaVA.
Example captions from each model are shown in Table IV.
We assessed 50 randomly selected image-caption pairs to
gauge the models’ performance. Our analysis revealed that
BLIP’s captions were not accurate enough to be considered
reliable—for instance, it described an image from the Philip-
pines, even though the Philippines was not included in the
dataset—leading us to exclude it from further evaluation.

In contrast, L1aVA consistently generated more detailed and
contextually appropriate captions, capturing subtle aspects of
the street view images. This higher quality of captioning likely
contributed to better alignment with textual features, which in
turn enhanced the model’s performance in urban perception
tasks. As a result, LlaVA outperformed the other models in
all experiments.

Figure 2 presents the correlation matrices for six different
perceptual scores, which serve as a measure of how various
attributes are related to each other. Panel (a) displays the
ground-truth correlations derived from human evaluations,
providing a benchmark for assessing the model’s performance.
In contrast, panel (b) shows the correlations predicted by the
UrbanVLM model.

The results reveal that the predicted correlations closely
align with the human-annotated ones, indicating that Urban-
VLM successfully captures the complex relationships between
the perceptual attributes. This strong agreement suggests that
the model can discern patterns in urban perception that are
similar to those recognized by humans. Furthermore, the



TABLE IV

IMAGE DESCRIPTION GENERATION SAMPLE

ID 50f5ec33fdc9f065f00087c3 50f5ec42fdc9f065f00088e0 50£5eb65fdc9f065f000826f
Image
i

Model Description Description Description

LlaVA The image depicts a narrow alleyway | The image is a street scene in what | The image shows a residential area
between two buildings, with one of the | appears to be a city. In the foreground, | with a well-maintained hedge around a
buildings being a brick structure. The | to the left, there’s a sidewalk with a dis- | house and several potted plants, creat-
alleyway is surrounded by a dirt road, | tinctive black and white mosaic pattern, | ing a pleasant, aesthetic, and inviting
and there are a few cars parked along | possibly Portuguese pavement. A dark | atmosphere.
the road. metal fence runs along the left edge,

bordering a large, multi-story building.

BLIP-2 | This image shows a narrow street in a | This image depicts a wide, well- | The image shows a residential street
residential area under development or | maintained urban street in a more af- | scene. Additionally, a tall hedge covers
construction. The buildings are primar- | fluent area. The environment appears | a gate and wall, possibly concealing a
ily made of exposed and unfinished red | clean, organized, and secure, with good | private residence.
bricks and concrete. infrastructure and urban planning.

BLIP This is a Google Street View image of | This is a Google Street View image of | This is a Google Street View image of a
a building under construction. a building in a city. green residential area in the Philippines.

alignment of these correlation matrices highlights the model’s
capability to understand and replicate human-like judgments
about urban environments.

V. LIMITATIONS
A. Data related

One limitation of this research lies in the inherent subjec-
tivity of the Place Pulse 2.0 dataset, which is based on human
perceptions of urban environments (e.g., safety, beauty, and
liveliness). These perceptions can vary significantly across in-
dividuals due to cultural, social, and demographic differences.
Consequently, the dataset’s labels may not generalize well to
diverse populations or regions outside the dataset’s original
scope.

This limitation is further compounded when using multi-
modal models, such as BLIP-2 and LlaVA, for image descrip-
tion generation, as these models may inherit or amplify biases
from the data used during pretraining or fine-tuning.

Similarly, vision-language models such as CLIP and SigLIP,
which are fine-tuned on these subjective labels, potentially
reinforce and propagate existing biases present in the dataset.
As a result, the model’s outputs may reflect skewed or
culturally specific perceptions of urban environments, which
calls for cautious interpretation and the need for more diverse,
representative training data in future research.

B. Model-related

Additionally, while leveraging high-performance models
such as LlaVA, BLIP-2, and CLIP or SigLIP provides state-
of-the-art capabilities for multimodal understanding and urban
perception analysis, the reliance on a single Nvidia RTX

3090 GPU introduces significant limitations. This hardware
constraint restricts the ability to experiment with larger or more
complex model architectures, as well as to perform extensive
hyperparameter tuning, ablation studies, or training over larger
datasets.

As a result, the capacity to explore the full potential of these
models is limited, and the outcomes may not reflect the best
possible performance for classification and regression tasks.
Moreover, the computational burden of processing a large
dataset is substantial; generating image captions for more than
100,000 street view images takes approximately two weeks of
continuous processing, making it challenging to iterate quickly
or test multiple variants of the pipeline.

Furthermore, generating meaningful descriptions and iden-
tifying visual-semantic features that contribute to perceptual
attributes (e.g., boredom, safety, or liveliness) is inherently
influenced by the pretraining data and objectives of these
foundation models. Since these models are trained on broad
internet-scale datasets, they may capture and prioritize stereo-
typical or contextually shallow features that do not fully align
with the specific urban settings or cultural nuances present in
the dataset.

This can result in oversimplified or misleading representa-
tions of urban scenes, where subtle indicators of safety or
beauty are either overlooked or misinterpreted. Such limi-
tations underscore the need for increased computational re-
sources to support more extensive fine-tuning, larger model
experimentation, and faster processing pipelines—factors that
are essential for enhancing the fidelity and relevance of the
generated descriptions in the urban perception domain.
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Fig. 2. Correlation matrix of the six perceptual scores computed using human-based evaluations and UrbanVLM scores predictions.

VI. CONCLUSIONS

This paper presents UrbanVLM, a novel multimodal
pipeline for urban perception that combines image-text gener-
ation, contrastive learning, dual-modality encoding, and task
optimization (classification and regression) to predict urban
perception labels and scores. By using contrastive loss to
align image and text encodings, and jointly training image
and description tokens, as well as visual projections, the model
benefits from rich multimodal representations.

Integrating these models enables the automation of analyz-
ing large volumes of Street View imagery with remarkable
precision, yielding results closely aligned with human evalua-
tions. This capability empowers researchers and policymakers
to assess urban environments at an unprecedented scale, sig-
nificantly reducing the time and effort required by traditional
survey-based methods while preserving the depth and nuance
of human judgment.
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APPENDIX
A. Background: Large Multimodal Models (LMMs)

Multimodal models are machine learning models that com-
bine information from two or more distinct types of data, re-
ferred to as modalities. Typical modalities include text, images,
audio, and video. The objective is to learn representations that
capture complementary signals from each modality, leading to
improved performance in complex tasks compared to single-
modality models [3]. Formally, given inputs xi,2o,...,2,
from different modalities, a multimodal model aims to learn
a function z = f(z1,2,...,x,) that integrates these inputs
into a unified representation.

Applications of multimodal models include tasks such as
image captioning, visual question answering, and audio-visual
speech recognition. The combination of modalities enables
models to reason across different types of information, re-
sulting in more robust and context-aware predictions. Recent
advancements in vision-language models, such as BLIP-2 [17]
and LLaVA [18], leverage large pre-trained vision encoders
and language models to generate text conditioned on image
features. These models align visual and textual encodings
in a shared space, enabling tasks like image captioning,
visual question answering, and perception-based description
generation. Contrastive learning objectives, such as those
used in CLIP [37], further enhance multimodal alignment by
encouraging representations of matching image-text pairs to be
close in the encoding space while pushing apart mismatched
pairs.

B. Percpetual score distribution

(b) Cities included in this dataset

Fig. 1. Place Pulse 2.0 dataset: Pipeline to obtain data and cities included in
this evaluation.

Figure 1 illustrates the processing pipeline used to obtain
image comparisons between images ¢ and j in category k
(e.g., safety). Additionally, we present the cities included in

the survey, noting that the United States is represented by
a greater number of cities compared to other countries. We
calculate the safety perception scores twice. Figure 2 (a)
shows the distribution using all unique IDs in the dataset,
where we observe that most images have a score of 3.33.
This likely results from the number of comparisons and their
corresponding wins and losses. Figure 2 (b) presents the
distribution of perceptual scores after aggregating images by
their ID. Specifically, we group images corresponding to the
same location and ID. After this adjustment, the distribution
becomes smoother and more balanced.
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Fig. 2. Safety score distribution in both scenarios: (a) using all 111,390 image
IDs; (b) mapping all repetitions to unique 108,820 IDs.

C. Labeling samples

Based on the scores Qf calculated, there is two strategies
for binary labelling: using a ¢ value, we take the top § % and



the bottom § % scores: scores and determine the appropriate category (e.g., defining
what constitutes a safe street).

1 if Q¥ is in the top 6%
Yik = 0 if QF is in the bottom 6% “) Safety: "A well-1lit, calm area with visible
security features like police or cameras,
The other is using the mean and the standard deviation: and no signs of danger."

Not safety: "A poorly lit, isolated area with
(5) signs of neglect or danger, like vandalism
or suspicious individuals."

1A QF > pk + 60" %
Yk =0 it QF <k —60*%
D. Prompts to generate image descriptions ) ) ) i
Lively: "A vibrant, bustling area with
lots of activity, pedestrians, and vehicles
creating an energetic atmosphere.”

We define two main prompts: (i) “You are an ordinary
observer analyzing a street view image. Please describe this
image focusing in the visual appearance.” for LlaVA model
and “Describe this image and its visual appearance.” for
BLIP-2. This prompt is focused on providing a general de-
scription of the image. (ii) The second prompt focuses on
describing the feelings or perceptions evoked by the image.
Based on prior work [24], [59], we incorporate parameters
such as city, country, and the category being assessed.

For the second type, we use two different prompt configu-
rations depending on the model being used:

LlaVA

Prompts structure for LlaVA focused on the category:

Not lively: "A quiet, empty area with little
activity, feeling dull and uninviting."

Boring: "A dull, inactive area with no
significant activity, feeling monotonous
and quiet."

Not boring: "A fast-paced, vibrant area
with energy, movement, and entertainment."

Wealthy: "An affluent area with
luxury shops, well-maintained
infrastructure, and grand buildings."

Imagine you are an observer
analyzing a street view image.

But you know about some

demographic factors and crime rates

in the city {city}, {country}. Not wealthy: "A neglected, impoverished

area with rundown buildings,

Based on the street view image provided, poor infrastructure, and visible poverty."

please describe the factors that contribute
to making this street view image
feel {category}.

Depressing: "A neglected area with
rundown buildings, broken windows,
and a gloomy, isolated feel."

Consider elements such as the

visual appearance,

environment, colors, structures,
infrastructure, well-maintained level,
daylight, and any human or

Not depressing: "A well-maintained,
lively area with clean streets,
greenery, and good lighting."

social factors. Beautiful: "A visually pleasing area
with lush greenery,
BLIP-2 attractive architecture,
Due to the token limitation in both models, we use areduced and scenic elements."
prompt:
Not beautiful: "An unattractive area

Question: What make this street view image
from {city}, {country}, feel {category}?
Consider aspects like the environment,
well-maintained, daylight, and architecture.
Answer:

with faded buildings, litter,
and a sense of decay."

E. Prompts for zero-Shot evaluations

When studying the ablation case without image-description
generation, we provide definitions to help the models assign



