
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

ZigzagNetVis: Suggesting temporal resolutions
for graph visualization using zigzag persistence

Raphaël Tinarrage, Jean R. Ponciano, Claudio D. G. Linhares, Agma J. M. Traina, and Jorge Poco

Abstract—Temporal graphs are commonly used to represent complex systems and track the evolution of their constituents over time.
Visualizing these graphs is crucial as it allows one to quickly identify anomalies, trends, patterns, and other properties that facilitate better
decision-making. In this context, selecting an appropriate temporal resolution is essential for constructing and visually analyzing the
layout. The choice of resolution is particularly important, especially when dealing with temporally sparse graphs. In such cases, changing
the temporal resolution by grouping events (i.e., edges) from consecutive timestamps — a technique known as timeslicing — can aid in
the analysis and reveal patterns that might not be discernible otherwise. However, selecting an appropriate temporal resolution is a
challenging task. In this paper, we propose ZigzagNetVis, a methodology that suggests temporal resolutions potentially relevant for
analyzing a given graph, i.e., resolutions that lead to substantial topological changes in the graph structure. ZigzagNetVis achieves this by
leveraging zigzag persistent homology, a well-established technique from Topological Data Analysis (TDA). To improve visual graph
analysis, ZigzagNetVis incorporates the colored barcode, a novel timeline-based visualization inspired by persistence barcodes
commonly used in TDA. We also contribute with a web-based system prototype that implements suggestion methodology and
visualization tools. Finally, we demonstrate the usefulness and effectiveness of ZigzagNetVis through a usage scenario, a user study with
27 participants, and a detailed quantitative evaluation.

Index Terms—temporal graphs, timeslicing, graph visualization, temporal resolution, persistent homology, persistence barcode

✦

1 INTRODUCTION

T EMPORAL graphs (or temporal networks) constitute a powerful
framework for modeling dynamic and complex systems from

a variety of domains, including computer science, social sciences,
and biology [26]. The visual representation of temporal graph
data provides an intuitive and interactive way to explore complex
relationships and dynamic changes over time. By using appropriate
visualization techniques, researchers and practitioners are able
to gain insights concerning the temporal evolution of the graph
structure, to identify trends and anomalies, and detect important
events that impact the system being studied.

Many studies have proposed graph drawing methods and
visualizations to enhance the analysis of real-world temporal graphs.
Examples include animated and timeline-based visualizations [5]
(e.g., animated node-link diagrams and Massive Sequence View
layout [61]), optimization of node positioning [35], [57], edge data
sampling [70], summarization of visual representations [56], [69].

Another important type of strategy concerns graph timeslicing,
i.e., the choice of a timeslice length that defines the temporal
granularity at which the graph will be studied (e.g., daily or weekly).
In this context, although non-uniform timeslicing methods have
been proposed in recent years [3], [47], [65], the most adopted

• R. Tinarrage and J. Poco are with the School of Applied Mathematics,
Fundação Getulio Vargas, Rio de Janeiro, Brazil.
E-mails: {raphael.tinarrage, jorge.poco}@fgv.br.

• J. Ponciano and A. Traina are with the Institute of Mathematics and
Computer Sciences, University of São Paulo, São Carlos, Brazil.
E-mails: jeanponciano@usp.br, agma@icmc.usp.br.

• C. Linhares is with the Department of Computer Science and Media
Technology, Linnaeus University, Växjö, Sweden.
E-mail: claudio.linhares@lnu.se

Manuscript received April 19, 2021; revised August 16, 2021.

strategy is uniform timeslicing, where timeslices of equal length
represent the graph over time [25], [34], [35], [53], [63], [68], [70].

Once the timeslice length has been chosen, one divides the time
interval into windows, and builds in each of them a graph, called a
snapshot, enabling the use of standard graph analysis techniques. In
this paper, in order to present a more general point of view, we will
use the term temporal resolution, which corresponds to timeslice
length, but expressed in terms of the graph’s initial resolution rather
than an arbitrary unit of time (both quantities are proportional).

Different temporal resolutions reveal different patterns, making
the choice of resolution crucial for effective analysis. This is
particularly relevant when dealing with temporally sparse graphs;
in this case, global pattern identification might not be easy (or even
possible) with too-fine resolutions due to the elevated number of
timestamps. However, choosing a suitable temporal resolution is
not a trivial task. In most cases, it requires exploratory analyses
leading to empirical choices or input from a domain expert with
prior knowledge of suitable resolutions.

To date, a handful of studies have tackled the problem
of automatic resolution selection. Some are based on features
computed on each snapshot (e.g., mean degree or clustering coeffi-
cient) and between consecutive snapshots (e.g., Jaccard similarity
between nodes or edges); optimal resolutions are then obtained via
maximization or peak detection [28], [55]. However, by considering
only the consecutive snapshots, these strategies miss information
regarding the graph’s global behavior. Incorporating larger-scale
dynamics has been explored, notably by finding the largest intervals
over which features “persist”, through minimization of a trade-off
information/variance [17], [21], [44], [55], [58], [59]. However,
these methods require additional hyperparameters or only study
snapshots through specific features, thereby losing the structural
information of the underlying graphs.

In order to study a temporal graph as a whole, and not frag-

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

mented into isolated snapshots, we will use tools from Topological
Data Analysis (TDA), and more particularly persistent homology
(PH) and zigzag persistent homology (zigzag PH). This theory,
which aims to capture relevant topological and geometric features
from datasets, has already been applied to a wide range of problems
concerning the analysis and visualization of graphs [2]. Although
its application to dynamic graphs is still in its early stages, a
common methodology is emerging: gathering the snapshots into
a zigzag module, and analyze its persistence barcode [22], [30],
[31], [41], [42]. We emphasize that, in this context, one of the main
benefits of employing zigzag PH instead of ordinary PH is that
the former allows tracking the appearance, disappearance, merge,
and split of connected components, while the latter only allows
appearance and merge. To the best of our knowledge, no study has
applied PH to the problem of temporal resolution selection.

Our contributions. This paper introduces ZigzagNetVis, a method-
ology that employs zigzag PH to suggest potentially relevant tem-
poral resolutions for visualizing temporal graphs. These resolutions
are identified based on the degree of topological change they induce.
As we will discuss throughout the article, leveraging ideas from
TDA yields new valuable insights for this problem.

First of all, the structure of zigzag module, by including not only
pointwise information (snapshots) but also dynamic information
(their relationship), allows one to study a temporal graph as a whole.
We propose a topological interpretation of the effect of changing
resolution, classified as timestamps shift or structural change.

Second, compared to certain features used in the literature, PH
can be clearly interpreted and visualized through the persistence
barcodes, a structure that, in the same vein as a tracking graph,
captures the dynamics of a temporal graph. An important feature
of the barcodes is that we can compare them via the bottleneck
distance. Based on this idea, we devise an explainability pipeline
that spots the most important differences between resolutions.

In addition, to enhance the visual analysis, ZigzagNetVis
incorporates a novel timeline-based visualization inspired by the
persistence barcodes. It was specifically designed to enhance the
analysis of connected components’ structure and evolution.

Last, we address an important related issue: the question of
selecting an “optimal” resolution is ill-posed. Indeed, different
resolutions may be relevant for uncovering different patterns.
Furthermore, no reference benchmark is available. We contribute
to this problem by bringing together various results scattered in the
literature, and by comparing our approach with other traditional
methods through an empirical study of two real-world datasets.

In summary, our main contributions are: (i) A layout-agnostic
method that leverages zigzag PH to suggest potentially relevant
temporal resolutions for graph visualization; (ii) An explainability
method for identifying the major topological differences caused by
two different resolutions; (iii) A timeline layout inspired by the
barcodes from TDA and which depicts the evolutionary behavior
of the graph’s connected components; (iv) The prototype of a web-
based system with interactive linked views to assist in the graph
analysis; (v) Evaluation using a usage scenario, a user study (27
participants), and a quantitative comparison with existing features.

2 BACKGROUND AND RELATED WORK

2.1 Temporal graphs and timeslicing

Timeslicing. Let N be an integer representing the maximal time
value. A temporal graph is a graph G and a collection of pairs

t = 0 1 2 3 4 5

r
=

1
(o

ri
g

in
a

l)
r

=
2

(p
a
rt

iti
o
n
)

r
=

2
(s

lid
in

g
-w

in
d
o
w

)

t = 0 1 2

t = 0

1

42

3 5

Fig. 1. A temporal graph of initial resolution 1 (first row) and its partition
and sliding-window timeslicing at resolution r = 2 (second and third rows).

(e, t), where e is an edge of G and t is an integer in [0,N]. In
practice, e represents an interaction between its nodes, occurring
at time t. This formalism underpins many models of dynamic
phenomena, ranging from communication networks to biological
mechanisms [26]. The value r0 = 1 is called the initial resolution
and the integers t ∈ [0,N] are referred to as the initial timestamps.
As in [36], the initial resolution represents the time interval in
which the graph data was originally recorded, e.g., timestamps in
r0 = 1 span a 1-day interval in the Enron network [29] and 20
seconds in the Primary School network [23].

In the context of temporal graph analysis, one is interested
in the graphical representation and analysis of temporal graphs.
To this end, the usual approach (used, e.g., in [35], [53], [68])
consists in choosing an integer r > 1, regularly cutting the interval
[0,N] into M = ⌊N/r⌋ sub-intervals [kr,(k+1)r], where k ∈ [0,M]
is an integer, and building M+1 graphs {Gk}M

k=0. Each graph Gk
contains the edges (e, t) where t ∈ [kr,(k+1)r], and and the nodes
of these edges. In other words, we build the graphs by collecting
the edges active during the corresponding intervals and discarding
the isolated nodes. The parameter r is called the resolution, and
the integers k ∈ [0,M] are the corresponding timestamps. In what
follows, we will refer to this process as partition timeslicing. The
first and second rows of Fig. 1 represent the collection of graphs
obtained via this process for resolutions 1 and 2, respectively. One
observes that, for the initial resolution, there are two timestamps
where the blue nodes are not present. This phenomenon disappears
at resolution 2. In general, as the resolution increases, both the
number of edges and nodes present at each timestamp may grow.

We will also consider another cutting process, called sliding-
window timeslicing [42], [63]. As before, let r be a resolution
parameter. For each initial timestamp k, we build the graph Gk
whose edges are those with the activation time t contained in
[k− r/2,k + r/2]. Unlike partition timeslicing, which separates
edges into disjoint intervals, sliding-window timeslicing allows
activation intervals to overlap (see Fig. 1). Note that the graphs
obtained for an even resolution r = 2s are identical to those obtained
for the next odd resolution r = 2s+1, since the edges’ activation
times are integers. Thus, in the rest of this article, we will consider
sliding-window timeslicing for even values of resolution only.

A characteristic shared by these two approaches is that all
timeslices have the same length, known as uniform timeslicing.
Although not as popular, the idea of non-uniform timesciling has
also been considered in recent years. This type of timeslicing allows
timeslices with different lengths over time. In graph visualization,
we may find timeslices whose lengths depend on how many
consecutive timestamps have similar graph structure [3] and how
active (in terms of bursts of events) the graph is over time. As

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

an example of this last case, while Ponciano et al. [47] use long
timeslices to represent intervals with bursts of events, Wang et
al. [65] adopt short timeslices to analyze such intervals.

In this paper, we focus on uniform timeslicing, the most
commonly adopted approach [25], [28], [34], [63], [68], [70].
In this context, the choice of the resolution r can strongly impact
the analysis: an overly coarse cut erases short-duration phenomena,
while an overly fine cut disrupts continuous phenomena [47]. This
impact has been studied in [32], [53], by comparing features of the
resulting temporal graphs (e.g., the average degree of their nodes
or the size of their connected components). It is worth noting that
the problem persists in the context of non-uniform timeslicing,
since such methods often rely on selecting an initial resolution, that
has to be chosen wisely [44]. Although it is a crucial parameter,
the resolutions are often chosen heuristically, and the question
of their selection is barely raised. Keeping in mind the potential
applications of temporal graph analysis, our work aims to describe
and implement an automatic method of resolution selection.

Automatic resolution detection. Among the works that tackle
this problem, two strategies are found. The first is to define
the parameter via the maximization of features’ values or the
minimization of trade-offs between features [28], [58], [59]. For
example, MoNetExplorer [28] is a visual analytic system that
ranks candidate timeslice lengths (i.e., window sizes) based on
three motif-based features: motif stability, motif fidelity, and motif
clusterness, which are computed for each candidate. Not every
possible length becomes a candidate; only those following a
predefined base time unit. For example, if the base is a month, there
are 12 candidates (lengths ranging from one to twelve months).
Other examples include [58], where the resolution is found by
minimizing a trade-off between the compression ratio and the
variance of a sequence of features, as well as [59], which seeks to
minimize the variance of several features (positional dynamicity,
degree, closeness, and betweenness centrality).

The second strategy involves abrupt change detection in
time series, for instance, from the Jaccard distance between
snapshots [44], from compression ratios [21] or from coefficients
of convergence [55]. In the same vein, [16] detects peaks from the
autocorrelation of the time series of features. Our method employs
this strategy since it can be naturally combined with features from
Topological Data Analysis. To highlight the value of our method,
we provide a precise theoretical justification and an extensive
empirical analysis.

As pointed out by the studies above [32], several distinct
resolutions may be relevant for analyzing a temporal graph.
Therefore, the question of a “correct” interval length is ill-posed.
In this work, we circumvent this issue by suggesting various values
— without relying on predefined user-selected candidates or other
parameters — and explaining their relevance.

2.2 Persistent Homology applied to Graphs

The mathematical tools used in this article are drawn from
Topological Data Analysis (TDA), a field at the intersection of
computational geometry, algebraic topology, and data analysis [14].
Persistent homology (PH), one of its most popular techniques,
allows us to infer homology groups of a dataset [43]. It has been
applied to a wide range of problems, including medicine, physics,
computer vision, and machine learning, among others. However,
its application to the study of temporal graphs is relatively new.

Analysis of graphs. PH is mainly used when the dataset is a point
cloud, an image, a scalar function, or a graph. We refer the reader
to the survey [2] for an extensive presentation of how TDA has
been applied to graph analysis. As an intermediary construction
between the input data and PH, the user must choose a filtration,
i.e., a non-decreasing family of subspaces that covers the data. To
this end, several popular filtrations exist, such as the Rips filtration.

However, in our context, the input data is not a single graph
but a sequence of graphs, and PH cannot be used directly. This is
due to the fact that the sequence may not be non-decreasing: as
time progresses, nodes or edges may disappear. As a consequence,
the temporal graph may not form a filtration. To get around this
problem, one strategy involves applying PH to each graph in the
sequence and analyzing the results, as [25] does in the context of
temporal graph exploration. Although it allows exhibiting global
properties of the data, this method does not use the full potential
of PH, since persistence is computed only at the level of each
graph, and not throughout the sequence. In particular, no temporal
information is contained in the persistence diagram. Moreover, this
method lacks the theoretical guarantees of TDA, such as stability.

As an alternative, one can use zigzag persistent homology
(zigzag PH), which we will describe in Sec. 2.3. This variation of
PH has already been used in the context of topological bootstrap-
ping, thresholding, and parameter selection. Unlike ordinary PH,
it is based on the notion of zigzag filtrations, which do not have
to be non-decreasing. In particular, it can be applied to a temporal
graph, allowing one to compute the persistence of the sequence
of graphs all at once [22], [30], [31], [41], [42]. By computing
the persistence barcode, the main object of TDA and described in
the next section, one can detect the global behavior of the graph
(e.g., the evolution of its connected components, periodic or chaotic
patterns). Our work brings these ideas to the problem of resolution
selection by investigating the link between the stability of zigzag
persistence modules and the choice of a resolution. In addition, we
also devised a new visualization layout based on PH.

We point out that, in this article, the topology of the graphs
will be studied through the lenses of the homology H0, that is,
the connected components. Ordinary PH enables us to track these
components over time, limited to the case of appearance and
merge. In addition, employing zigzag PH allows one to study the
disappearance and splitting of connected components, phenomena
that occur in temporal graphs. As exemplified by numerous articles
in the TDA literature, H0 contains sufficient information to solve
certain problems [7], [13], [45], [46]. Furthermore, in the particular
context of temporal graph visualization, it has been reported that
the analysis of connected components allows for a rich exploration
of the data [37]–[39], [66]. Since the purpose of this article is to
visualize the formation of groups within networks, i.e., of connected
components, we will focus on H0. The higher homology groups
Hi, i > 0, although they could capture additional information (e.g.,
tunnels, voids), are beyond the scope of the paper.
Visualization. TDA has also seen applications in the context of
(non-temporal) graph visualization. By quantifying the strength of
connections between the nodes of the graph, TDA can improve
force-directed layouts and facilitate interaction with them [20],
[57]. One may also consider the connectivity between communities,
resulting in new representations, such as those in [8], [37], [51].

In contrast, applications of TDA to the visualization of temporal
graphs are few. The first work is found in [38], where the
persistence diagram is used as a means to visualize the connected
components generated by a scalar field. However, in this case,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

PH is computed at the level of each snapshot, and therefore does
not capture information about the dynamics of the data.To our
knowledge, only [25], [42] propose visual layouts incorporating
temporal information. The former consists of a curve, exhibiting
patterns and changes in behavior over time. However, it does not
provide information concerning the topology of the graphs at each
snapshot. The latter layout uses the persistence barcodes given by
the zigzag PH. It displays the topological properties of the graphs at
each timestamp and shows how they evolve over time. Nevertheless,
in some contexts, focusing only on graphs’ topological properties,
such as their number of connected components, can be too coarse
and make analysis and visualization difficult for the user. An
important contribution of our work is to enhance this representation
by incorporating information about the size and composition of
the connected components. These enhanced barcodes, that we call
“colored barcodes”, show promising results for graph visualization.

We draw the reader’s attention to the fact that a close connection
can be established between the persistence barcodes offered by
TDA and certain popular visualization techniques. In particular,
the persistence barcodes of (ordinary) PH can be deduced from
the merge tree of the data, and that of zigzag PH from its tracking
graph [37], [66]. In particular, the barcode graph [18] or formigram
[30], [31], a handy tool of TDA, can be understood as a tracking
graph. This connection is studied in further detail in Sec. 5.2.
Similarly, the visualization proposed in this paper (Fig. 9(A)),
, which incorporates additional information into the persistence
barcodes, is related to the idea of nested tracking visualization [38],
[39]. Both approaches draw flows between adjacent timestamps
to represent events like merges and splits (in our case, triggered
by user interaction). This last connection, however, only concerns
visual representation, since these tools are designed to handle
different information (nested components vs. disjoint components).
Sec. 5.2 discusses our design decisions and explains in more detail
why nested tracking visualizations are not applicable in our case.

2.3 Zigzag persistent homology
We now succinctly introduce the topological tools used in this
paper, and refer the reader to [14] for a thorough presentation.
Persistence modules. Zigzag persistent homology, introduced in
[11], is based on the notion of simplicial homology. Given an
integer i ≥ 0, the ith homology functor Hi is an operator that
takes as input a graph G, and returns a vector space, denoted
Hi(G), which contains topological information about G. As already
discussed, we will only consider H0(G), the group of connected
components, since it already enables a rich analysis of the graph’s
structure. It is a vector space whose dimension is equal to the
number of connected components of G.

To define a zigzag PH, one has to first build a zigzag filtration,
that is, a sequence of graphs, such that for each pair of consecutive
graphs, one of them is included in the other. In order to build such
a filtration, consider the sequence of graphs {Gk}M

k=0 defined in the
previous section, using the partition or sliding-window timeslicing.
By considering the union graph Gk ∪Gk+1 for all the pairs of
consecutive graphs, one obtains a zigzag filtration

G0 ↪−→ G0∪G1←−↩ G1 ↪−→ G1∪G2←−↩ G2 ↪−→ . . .

In this filtration, one is able to track the evolution of the connected
components: how they merge, split, appear or disappear.

By applying the H0-homology to this filtration, the graphs are
transformed into vector spaces, and the inclusions into linear maps:

t = 0 1 2 3 4 5

r
=

1
 (

o
ri
g
in

a
l)

r
=

2
 (

p
a
rt

iti
o
n
)

Fig. 2. Barcodes associated with a temporal graph at resolution 1 and 2.
Each horizontal bar refers to a connected component throughout time.

H0(G0)→H0(G0∪G1)←H0(G1)→H0(G1∪G2)←H0(G2)→ . . .

This sequence forms a zigzag persistence module, an algebraic struc-
ture that condenses all the information concerning the evolution of
the connected components. For instance, one reads directly from
these maps whether a connected component splits or is preserved;
similarly, one reads whether two connected components merge.

Barcodes. To each persistence module is attached a persistence
barcode, denoted B. It is a collection of intervals [b,d], called
bars. They are interpreted as follows. For each timestamp k,
the number of bars present at this time is equal to the number
of connected components in the graph Gk. Moreover, we can
see how these connected components evolve: To a bar [b,d]
corresponds a connected component of the graph born at time
b (either because new points appeared in the graph, or because an
existing component split in two) and died at time d (either because
the points that compose it disappeared, or because it merged with
another component). The barcode is the main object of TDA, and
can be understood as a visual representation of persistence modules.

As an example, we give in Fig. 2 the persistence barcodes
associated with a temporal graph at resolutions 1 and 2, as in
Fig. 1. Let us analyze the first barcode. It contains a long bar [0,5],
indicating that there is a connected component that persists all
along the filtration. We may think of it as representing the nodes
colored in orange, or red. Moreover, there are three smaller bars,
depicting connected components that survive for a shorter time:
one bar [0,2] represents a component that merges with another (the
red nodes with the orange nodes), another bar [0,2] represents a
component that disappears (the blue nodes) and reappears at t = 5.
Besides, the second barcode of Fig. 2 contains only three bars.
Indeed, in the corresponding filtration, the blue nodes are always
present, resulting in a long bar [0,5] in the barcode.

It should be pointed out that the barcode does not allow one to
identify directly which connected components the bars represent.
In certain cases, in the presence of many bars, for instance, this task
can be difficult to perform visually. One part of our work consisted
in defining an improved version of the barcode, called the colored
barcode, which allows us to fix this problem (see Sec. 5.1).

Bottleneck distance. Another fundamental feature of TDA is the
possibility of comparing two persistence barcodes, through the
notion of bottleneck distance. In a few words, this distance seeks a
pairing between the bars of the barcodes and computes the largest
distance between a bar in the first barcode and one in the second.
The exact definition is given in our supp. material (Sec. A). With
respect to the bottleneck distance, two barcodes are close if the
large bars of one can be matched with the large bars of the other,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

r =1 (original) r =2 (partition)

Fig. 3. A pairing between the barcodes of Fig. 2. We outline in red the
most distant paired bars (distance 3), causing the bottleneck distance.

the short bars being forgotten. Fig. 3 shows a pairing between the
barcodes in Fig. 2. The most distant bars in this pairing are the two
bottom ones, [0,2] and [0,5]. The distance between these bars is 3,
which is also the bottleneck distance, denoted dB(B,B′).

The bottleneck distance lies at the core of our method and will
be used as a means to select resolutions in Sec. 4. Namely, we will
compare the temporal graphs coming from two different resolutions
via the bottleneck distance between the persistence barcodes
coming from their zigzag filtrations. This distance computes
the global topological agreement between these temporal graphs,
allowing us to determine whether they are similar or not, just as in
the context of abrupt change detection. In addition, the bottleneck
distance offers two advantages. First, it allows for a theoretical
treatment: we will study in Sec. 4.2 what values of distance are to be
expected, and when they indicate a relevant change. Secondly, and
as a consequence of its definition, the bottleneck distance is always
caused by a pair of bars or a bar alone. From a practical point of
view, one can identify which nodes of the graph are responsible
for the topological difference between two barcodes. Based on this
observation, we will describe an explainability pipeline in Sec. 9.1.

3 DESIGN TASKS AND WORKFLOW

Design tasks. Besides suggesting temporal resolutions, we seek to
effectively explore the graph, and identify global and local behav-
iors and patterns, under a given temporal resolution. In that sense,
we designed our visual components and interaction to meet high-
level tasks derived from low-level tasks and dimensions proposed
in Bach et al.’s taxonomy for temporal graph exploration [4].

Specifically, we combine the three task dimensions described
in this taxonomy: temporal/when (easy identification and reaching
of specific time steps); topological/where (easy identification,
situation, and tracking of elements with properties of interest);
and behavioral/what (easy understanding of the behaviors and
changes that affect elements of interest). These dimensions help
generate the following tasks, which should be satisfied during the
graph analysis under any temporal resolution.

T1: Analyze particular groups of elements (entire network, con-
nected components, or nodes) in terms of identification, situation,
and inspection at a given time of interest.

T2: Analyze the temporal evolution of particular groups of
elements, identifying, e.g., the addition or deletion of elements and
abrupt increases or decreases of an element property (referred to as
peak or valley events in Ahn et al.’s taxonomy [1]).

T3: Identify and compare structural changes that occur at particular
times of interest.

In addition to the when, where, and what dimensions from
Bach et al.’s taxonomy, we further consider why and how task
descriptions from Brehmer & Munzner’s multi-level typology of
visualization tasks [10]. From the why point of view, our tasks
enable discoveries, which include the generation and verification of
hypotheses. To achieve that, users first locate groups of elements of
interest (tasks T1, T2) or at particular times (task T3). Alternatively,

they can freely explore the visualization to find elements/times of
interest (e.g., based on global patterns or anomalies). Once these
are found, users may identify, compare, and summarize elements
or patterns (T1-T3). From the how perspective, our views will
meet the tasks by encoding the network data and by providing
manipulation methods such as selection, navigation, and filtering.
They will also introduce new elements to the visualization by
importing network data on demand.

Workflow. As illustrated in Fig. 4(a), users first input a temporal
graph and its node categorical metadata (optional). The resolution
suggestion then proceeds as follows (Fig. 4(b), details in Sec. 4):
we build persistence barcodes for every candidate resolution (pre-
defined range of values, e.g., [1,100]); we compute the bottleneck
distance between pairs of barcodes, and build a suggestion curve
using the distances. Resolutions are then suggested based on
the curve’s peaks. Finally, users visualize the graph under any
resolution by using our proposed layout — the colored barcode
(Sec. 5.1) — and associated node-link diagrams, visualizations that
compose our system prototype (Fig. 4(c), details in Sec. 5.3).

4 TEMPORAL RESOLUTION SUGGESTION

4.1 Description of the method
As discussed above, the choice of a resolution significantly impacts
the analysis of a temporal graph. In practice, one wishes to select
an “optimal” resolution. However, the problem is ill-posed: various
resolutions may be relevant, leading to different analyses. To
circumvent this issue, our strategy selects a collection of resolutions,
each of which reveals different behaviors of the temporal graph.

Let us consider an initial set of resolutions {r0, . . . ,rn}, to be
tested, and a parameter m, the number of requested resolutions.
Our method consists in partitioning this set into m subsets of
consecutive resolutions,
{ri0 = r0, . . . , ri1}, {ri1 , . . . ,ri2}, . . . , {rim−1 , . . . ,rim = rn}, (1)

where each subset consists of resolutions for which the temporal
graphs exhibit similar behavior. We will quantify this similarity
using zigzag PH, as explained in the next paragraph. As a last step,
we will choose a resolution in each of these subsets — for instance,
the first ones, ri0 , . . . ,rim−1 — therefore yielding an exhaustive
sample of all possible behaviors exhibited by the temporal graph.

Our method for obtaining a partition as in Eq. (1) consists in
comparing each pair of consecutive resolutions ri and ri+1, and
in detecting abrupt changes in the corresponding temporal graphs.
This detection is performed using zigzag PH, as follows. First, we
perform timeslicing on the temporal graph G for both resolutions,
using partition or sliding-window, as described in Sec. 2.1. Second,
we compute the corresponding persistence barcodes Bi and Bi+1,
as well as their bottleneck distance dB(Bi,Bi+1), as described in
Sec. 2.3. Gathering all the bottleneck distances yields a sequence

dB(B0,B1), dB(B1,B2), . . . , dB(Bn−1,Bn),

which we represent as a curve, drawn in red in Fig. 5. We refer to
it as the suggestion curve.

On the suggestion curve, peaks correspond to consecutive
resolutions for which the associated barcodes are significantly
different, which we interpret as structural topological changes in
the temporal graphs. Finally, we identify the peaks of this curve
and use them as separators to obtain the partition of Eq. (1). We
give further explanations in the next section.

In a nutshell, our methodology employs the bottleneck distance
between consecutive resolutions as a feature to perform abrupt

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

b) Temporal resolution suggestion

Build persistence barcodes
for candidate resolutions

1

Compute bottleneck
distances

2

Build suggestion curve3

Suggest resolutions
using the curve’s peaks4

c) Visualizationa) User input

Temporal graph
+

Node metadata
(optional)

Fig. 4. ZigzagNetVis workflow. (a) Users input a temporal graph and node metadata (optional). (b) We suggest resolutions using a four-step procedure.
(c) Users visualize the graph using any resolution through the colored barcode and node-link diagrams, visualizations that compose our prototype.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 i
i rii d (,)B i i+1 i (d (,) r /2)B i i+1 i+1

+

Fig. 5. A suggestion curve in red, its corresponding normalized sugges-
tion curve in blue (for partition timeslicing), and the curve i 7→ ri in black.

change detection. While change detection based on features is
common in temporal graph analysis (see, e.g., [3]), incorporating
PH offers several advantages. First, thanks to the high interpretabil-
ity of PH, we can give a heuristic analysis in Sec. 4.2, already
yielding important insights. Moreover, as studied further in Sec. 9,
the bottleneck distance appears to be a stable and relevant quantity,
gathering information from various other features of the literature.

4.2 Timestamps shifts and structural changes

In the previous section, we have built the suggestion curve i 7→
dB(Bi,Bi+1). In order to identify relevant peaks of this curve, we
need to give some comments regarding the values it can take.

Partition timeslicing. Let us first consider that we have chosen
the partition timeslicing. By going from resolution ri to ri+1, one
alters the timestamps: a timestamp for the first resolution will be
at a distance at most ri+1/2 of a timestamp for the second one.
Consequently, we expect that the bars of the persistence barcode
will be displaced by a distance of at most ri+1/2. This interpretation
leads us to distinguish two values of the bottleneck distance.

• If dB(Bi,Bi+1)≤ ri+1/2, the distance is merely caused by arti-
ficial changes coming from the modification of the timestamps’
values. We call it timestamps shift.

• If dB(Bi,Bi+1)> ri+1/2, the distance is no longer just caused
by the displacement of the timestamps: we consider that the
temporal graph has undergone a structural change.

In order to estimate the structural changes only, we must detect the
values of the suggestion curve that exceed ri+1/2. In other words,
we seek the positive values of the normalized suggestion curve:

i 7−→ (dB(Bi,Bi+1)− ri+1/2)+

where (·)+ denotes the positive part of a real number. This curve
is represented in Fig. 5. In this example, we would detect the
resolutions r2 and r7 as values that cause structural changes since
they are the first resolutions after the peaks occurring at r1 and r6.

Fig. 2 provides another example. Going from resolution ri = 1
to ri+1 = 2, we have seen previously that the bottleneck distance is
equal to 3, greater than ri+1/2 = 1, hence we observe a structural
change. It is caused by the two blue bars merging together. If
we had considered only the red and yellow bars, we would have
observed a bottleneck distance of 2, i.e., a timestamps shift.

Sliding-window timescling. We now turn to the case of sliding-
window timeslicing. By going from resolution ri to ri+1, the

activation windows of the edges are only altered by a value
(ri+1− ri)/2. Consequently, we expect that the bars of the barcode
will be displaced by a distance of at most (ri+1− ri)/2. This leads
us to define a timestamps shift if dB(Bi,Bi+1)≤ (ri+1−ri)/2, and
structural change if dB(Bi,Bi+1) > (ri+1− ri)/2. Accordingly,
we define the normalized suggestion curve as

i 7−→ (dB(Bi,Bi+1)− (ri+1− ri)/2)+.

As before, we identify structural changes through its positive values.
In practice, users can select the preferred timeslicing method

prior to applying the resolution suggestion technique. However, the
results obtained for partition or sliding-window may be different.
In the case of partition, a particularly inconvenient phenomenon
occurs. Two bars of the barcode might merge between ri and ri+1,
provoking a structural change, and then split between ri+1 and
ri+2, again provoking a structural change. We call this phenomenon
instability, and we explain the situation in more detail in our supp.
material (Sec. B.1). Consequently, we recommend that users use
sliding-window timeslicing, and we make this choice in the rest of
this article, except when stated otherwise.

Peak detection. In real-life examples, the normalized suggestion
curve may contain many positive values. However, returning all the
corresponding resolutions to the user would not be relevant. Instead,
we choose to return only the most prominent peaks of the curve.
In practice, prominence is computed using the package signal
of scipy. We return only m = 5 maxima, five being an arbitrary
value that we found suitable. We will give concrete outputs of our
algorithm on eight temporal graphs in Sec. 9.1.

Other distances. In TDA, one chooses a distance according to
the context: while the bottleneck distance calculates the maximal
discrepancy between two barcodes, the Wasserstein distance
incorporates all perturbations. The latter option is of interest, for
instance, when low-persisting features matter [14]. In contrast,
our work aims to detect structural changes, which are evidenced
by the perturbation of a single bar of the barcode. Therefore, the
bottleneck distance appears as a natural choice (see, for instance,
Fig. 2). This observation is supported by Sec. C.2.4 of our supp.
material, where it is shown that the Wasserstein distance leads to
less interpretable results. In the same vein, one could use, instead
of the bottleneck distance, any feature that quantifies the proximity
between two temporal graphs. To this end, many quantities exist,
such as those presented in Sec. 9.2 (e.g., mean degree, density,
or burstiness). However, they all appear to either lack stability or
provide limited information. Our experimental study shows that
the bottleneck distance acts as a relevant trade-off between stability
and information, “incorporating” several popular features.

5 VISUALIZATION

5.1 Colored barcode layout

In practice, the barcodes of TDA may not contain enough
information: one is not able to identify which nodes are part of

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

which bar. Indeed, the barcode is built from the homology groups
H0(Gk) of the graphs, where the information about the nodes has
been lost. A contribution of our work is to adapt and implement an
algorithm that identifies the nodes that compose each bar.
Nodes identification. Consider a temporal graph, the sequence of
graphs {Gk}M

k=0 obtained by timeslicing, and the H0-barcode B of
its zigzag filtration. We wish to find, for each bar I ∈B and each
timestamp k ∈ I, a connected component CI

k such that
• for each timestamp k, if Bk denotes the set of bars living at

time k, then the set {CI
k | I ∈Bk} is a partition of the set of

nodes of Gk,

• for each bar I ∈B and each k ∈ I such that k+1 ∈ I, we have
CI

k ∩CI
k+1 ̸= /0.

The first point guarantees that we do not attribute the same node
to two bars at the same timestamp, and the second point that,
within a bar, we choose a sequence of connected components
that are connected one to another. Such a choice is possible as a
consequence of previous work, which is detailed below.

Once the node identification has been done, this information
can be incorporated into the persistence barcode. By attributing
to each node or cluster of nodes a color (representing, e.g., node
metadata information), we paint the bars in accordance with the
nodes it contains. We also vary the height of the bars to indicate the
number of nodes. We call this representation the colored barcode.
In case it is not possible to assign different colors to nodes (e.g.,
when there are no node metadata), we use a single color and only
consider the variation of the heights of the bars.

We give in Fig. 6 two examples of colored barcodes, where
the nodes are divided into three clusters: red, orange, and blue.
They correspond to the (non-colored) barcodes of Fig. 2. On the
first colored barcode (Fig. 6(top)), one reads that a connected
component persists throughout the filtration, initially composed
of orange nodes and later receiving the participation of red nodes.
One can also visualize the connected component formed by the
blue nodes, which disappears and reappears at t = 5.

The choice of nodes composing each bar is not unique. For
instance, on the first barcode of Fig. 6, the long bar starts with only
orange nodes, until t = 3, where red nodes connect. In this example,
one could have chosen to start this long bar with red nodes instead.
The analysis of the colored barcode, however, is independent of
this choice. The user must keep in mind that, when two connected
components merge, only one of the two has been arbitrarily chosen
to appear at the beginning of the corresponding bar.
Algorithm. We now turn to the implementation of nodes identifica-
tion, based on the work of Dey and Hou [18]. As described in the
article, there exists an intermediate construction between the zigzag
filtration and the persistence barcode, called the barcode graph. It
is built recursively by studying how the temporal graph {Gk}M

k=0
evolves: creating, removing, merging, or splitting connecting
components. Formally, each node of the barcode graph is associated
with a connected component of Gk at a certain time k. Moreover,
an edge is added between two components at times k and k+1 if
they share a node (see Fig. 7). We draw the reader’s attention to
the fact that the barcode graph is a tracking graph (see Sec. 2.2).

Algorithm 1 of the aforementioned article allows one to deduce,
from the barcode graph, the persistence barcode of the zigzag
filtration. To do so, the authors recursively build the barcode forest,
a complementary construction. For the most part of the algorithm,
when iterating through the filtration, five events may happen:
ENTRANCE, DEPARTURE, NO-EVENT, MERGE and SPLIT. They

t =0 1 2 3 4 5

r
=

1
 (

o
ri
g

in
a

l)
r

=
2

 (
p

a
rt

iti
o

n
)

Fig. 6. Colored barcodes corresponding to the barcodes of Fig. 2. Vertical
arrows depict component merging.

t = 0 1 2 3 4 5

Fig. 7. On top of a zigzag filtration (top) is built the barcode graph (middle).
By keeping the nodes’ information, an adaptation of [18, Algorithm 1]
enables us to compute the colored barcode (bottom).

respectively represent that a node entered the filtration, that a node
left the filtration, that an edge entered or left without changing the
topology of the graph, that an edge entered the filtration provoking
two connected components to merge, or that an edge left the
filtration provoking a connected component to split in two. Only
DEPARTURE and MERGE provoke the appearance of a new bar.

In our context, since we wish to identify the nodes that compose
the bars, we incorporate a further step in this procedure. During
the event DEPARTURE (as the dashed node of Fig. 7), we simply
collect the connected components written on the path, and add this
information to the bar of the barcode. For MERGE (as the dashed
edges of Fig. 7), there are two potential paths; we choose one
arbitrarily, associate the new bar with the connected components
written on it, and remove these components from the graph.

Note that the latter choice is not unique as the “elder rule”
holds for ordinary PH, but not in the zigzag context. For instance,
if the filtration consists of one connected component, that splits in
two (at time t1) and then merges (at time t2), then the barcode will
consist of two bars, one bar being [t1, t2]. However, two choices
of identification are possible for this bar, and none is canonical. In
practice, when choosing a path to remove, we remove the one that
starts with the least number of nodes. This allows for maintaining
homogeneity within the bars; that is, bars containing many nodes
will continue to have many nodes.

One final detail should be noted. The original algorithm takes
as input a zigzag filtration such that two consecutive graphs are
obtained one from the other by adding or removing a single node
or edge. However, partition or sliding-window timeslicings may
yield filtrations where several nodes or edges are added or removed
at the same time. Consequently, we must apply a pre-processing
step to assign each event a unique time. Once the algorithm has
been performed, we go back to the initial timestamps.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

5.2 Design decisions

In practice, our colored barcode is a timeline visualization that can
be thought of as a series of stacked area charts, each referring to
a connected component and its node members throughout time
(Fig. 9(A)). As mentioned above, the color and height indicate the
label (node metadata) and number of nodes, respectively.

Alternative designs. We have considered alternative design choices
before proposing this layout. We decided to use a timeline
visualization instead of animations to better meet analyses that
rely on multiple and often distant timestamps (tasks T2, T3),
complying with [5]. We then studied the suitability of existing
timeline visualizations for our context. An option would be a
visualization based on tracking graphs [34], [37], [66]. In particular,
LargeNetVis’s Global View [34] is a grid-based layout where
rows and columns represent respectively network communities
and timeslices. In this view (see Fig. 11(b)), communities are
encoded as circles with varying sizes, and their temporal evolution
is depicted through links connecting communities from consecutive
timeslices. Although we could adapt it to encode connected
components, it would still not provide immediate information about
components’ node members. The identification and tracking of the
members would also not be immediate with other visualizations,
for instance, MSV [61], PAOH [60], and TAM [34].

We have also considered nested tracking graph visualiza-
tions [38], [39], but we opted for a different approach due to
their inherent limitations in our specific context, particularly those
concerning visual scalability, in terms of the number of timestamps,
and the intrinsic components’ hierarchy they consider. First, nested
tracking graphs depict the graph evolution by representing events
(i.e., merges and splits) through horizontal flows drawn between
uniformly spaced timestamps. While our visualization also enables
the analysis of these events upon interaction, our primary focus lies
on depicting the graph structure at each timestamp and the most
salient connected components, namely the longest bars throughout
time. We, therefore, provide a more scalable solution for our case by
employing vertical flows alongside timestamps that are positioned
one right after the other. As an example, while Figs. 9 and 10
illustrate our layout for a graph with 1,555 timestamps, all visual
analyses from [38], [39] consider a maximum of 100 timestamps.

Secondly, nested tracking graphs leverage hierarchical re-
lationships coming from superlevel sets to derive component
visibility, which can potentially lead to occlusions and impair
the identification of patterns that would be crucial to our context
(e.g., the number of nodes in a given component or its life-
cycle). Conversely, we consider graphs with components without a
hierarchical relationship (disjoint). Stacking them instead of nesting
allows for immediate and effortless recognition of individual
components and their attributes. Overall, we consider our colored
barcode layout to be a better solution for our tasks and goals. It is
suitable for graphs with many timestamps, emphasizes structural
clarity, and enables efficient identification and exploration of key
connected components and timestamps.

Bars’ positioning. We use two representations for the bars’
positioning in our colored barcode. The first consists of fixing
the bars’ bottom ordinate and distributing them upwards only (see
Fig. 9) — we call this approach “bottom-based ordering”. Inspired
by well-established cluster positioning on Sankey- and nested graph
visualizations (e.g., [38], [39]), our second representation considers
centered bars whose height varies uniformly up and down (see
Fig. 10) — we call it “center-based ordering”. In both cases, the

t = 0 1 2 3 t = 0 1 2

B CA

Fig. 8. Toy example showing the behaviors when marking the checkbox
“See flows under interaction” and hovering over a bar: (left) if selecting
by label, the system tracks same label nodes throughout time; (right) if
selecting by conn. component, the system shows merges/splits in the
selected component.

bars are arranged in such a way as to reduce the space they occupy
in the interface and the lengths of the vertical flows.

5.3 System prototype

We now describe the interface and interactions that compose the
prototype of our ZigzagNetVis system (see a screenshot in Fig. 9),
a web-based visual analytics tool that incorporates all steps of our
workflow and was used by our user study participants (Sec. 8).

When first loaded, the system automatically opens a menu
through which it is possible to input a network and node categorical
metadata (optional). The system then suggests temporal resolutions
for the inputted network following the procedure described in Sec. 4.
To help users choose among the suggested resolutions, they can ask
for quantitative network measures (or features). For each resolution,
the system will display values for burstiness [53], average lifetime
of edges [53], normalized stability [15] and the inverse of the
normalized fidelity — the original fidelity [15] gives us a distance
measurement and we use the similarity counterpart. In our case, a
higher value indicates greater faithfulness of the network under the
selected resolution to the original network (r = 1). After choosing
a resolution, users can filter out bars (i.e., connected components)
with less than x node or with duration less than y timestamps, x and
y being user-defined. We provide a visual comparison of different
filtering parameters in our supp. material (Sec. C.1).

Once the network, temporal resolution, and the other parameter
values are chosen, the system exhibits its first and main view
(Fig. 9(A)), which contains the colored barcode and appears with
maximized height and width, i.e., also occupying the screen space
on Fig. 9(C-E). This view adopts as default the bottom-based
component ordering, but the user is free to change it at any time
(Fig. 9(H)). Besides zoom in/out and pan, users can select specific
connected components or bars representing nodes that share the
same label (Fig. 9(G)). In this way, it is possible to analyze their
behavior at particular timestamps (tasks T1, T3) and evolution
throughout time (task T2). Nodes sharing the same label can be
selected in the layout by hovering over the label of interest in the
color legend or the bar with the color associated with that label.
Likewise, a connected component can be selected by hovering over
any of its bars (Fig. 9(A)). It is also possible to persist the current
selection (left-click) and select multiple labels (CTRL + left-click).

Two behaviors are expected when marking the checkbox “See
flows under interaction” (Fig. 9(G)) and hovering over any bar
of a component: (i) if selecting by label (see Fig. 9(G) again),
the system enables tracking the nodes with that (or those) label(s)
throughout the connected components over time, as illustrated in
Fig. 8(left); (ii) if selecting by connected component, the system
shows the events that connect that component to others over time
through vertical flows that indicate merges and splits (Fig. 8(right)).

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

After finding a potentially relevant timestamp or interval for
analysis, the user double-clicks near it and the system opens three
node-link diagrams as presented in Fig. 9(C-E), one showing the
network structure at the timestamp of interest (referred to as t(2),
see Fig. 9(D)) and two others, by default, for t(2)∓10 timestamps
(referred to as t(1) and t(3), see Fig. 9(C,E)). Timestamp markers
are inserted in the colored barcode to highlight the three timestamps
whose node-link diagrams are opened (Fig. 9(B)).

Users can freely change the three timestamps being analyzed
— note, e.g., the values for t(1), t(2), and t(3) in Fig. 9. This way,
they can analyze the structure of groups of elements at different
granularity levels (from the entire network to individual nodes) for
any timestamp (task T1), as well as identify and compare structures
and temporal behaviors by analyzing multiple node-link diagrams
(tasks T2, T3). There are two ways for the user to reach a new
timestamp of interest. If the user knows a priori which timestamp
is relevant for analysis, they can simply type the new timestamp
value in the node-link diagram area to update it; the system
then repositions the corresponding timestamp marker accordingly.
However, if the user is interested in analyzing a timestamp or
interval that caught their attention because of an unexpected
behavior found on the colored barcode, they can drag and drop
one or more timestamp markers to that timestamp or interval; the
system then updates the node-link diagram(s) accordingly.

Node-link diagram. Given a selected timestamp of interest tk, our
node-link diagram shows all nodes and edges active at tk using
a spring-force node positioning [9]. Nodes are colored using the
same color scale as in the colored barcode. In addition, the system
also shows a tooltip with node id and label whenever a node is
hovered over, as illustrated in Fig. 9(F). The user can expand
one or more node-link diagrams (button) and drag/drop their
maximized versions, e.g., to put them side-by-side and optimize
comparisons. Depending on the type of selection (recall Fig. 9(G)),
a click on a node x in a diagram (expanded or not) selects all
nodes that contain the same label as x or all nodes that belong to
the same connected component as x (T1). To help users compare
structures and temporal behaviors (T2, T3), all node-link diagrams
(expanded and non-expanded) are coordinated with each other and
with the colored barcode: groups of nodes selected in one of them
are automatically selected in the others (see, e.g., the non-selected
connected component in Fig. 9(A,D), t(2) = 710).

Design decisions. Besides the decisions made on the colored
barcode (recall Sec. 5.2), we also studied alternative approaches
before choosing static node-link diagrams to explore the network
structure at particular times. First, we considered using animations
to show the evolution of the network during the time interval
selected through the timestamp markers. We gave up this idea
because animations have limitations on tasks involving multiple
and distant timestamps [5]. After opting for “static” visualizations,
we considered node-link diagrams and adjacency matrix-based
visualizations [6]. We chose the former as it would be easier to
identify connected components using the diagram, especially when
adopting spring-force node positioning. Finally, we decided to
enable the analysis of three timestamps (three node-link diagrams
at once) based on the intuitive notion of past, present, and future.

As mentioned, our system prototype associates different colors
to nodes (or bars) with different labels when this metadata
information is available. Color-blind users can use a color scheme
that is safe from color blindness. Our prototype also provides a
series of features that help colorblind users in their analysis, e.g.,

by allowing selections and by showing informative tooltips. In the
user study, we validated visualizations and color scheme with two
self-declared colorblind participants (see Sec. 8.3).

Implementation details. We use a client-server architecture. The
server side was implemented in Python and uses popular libraries
and frameworks (e.g., NetworkX, Flask, and Dionysus2). We
used the D3 library in our views. A demo version of the system, used
by our user study participants and already including suggestions, is
available at https://github.com/raphaeltinarrage/ZigzagNetVis.

Computational complexity. The overall ZigzagNetVis process
can be divided into three steps: open the dataset (1), compute the
suggestion curve (2), and compute the colored barcode for one
resolution (3). Let m be the number of pairs (edge, time) in the
temporal graph, and let n be the number of resolutions tested. Step
1 consists in reorganizing these pairs in a dictionary, and creating
a list of unique edges, resulting in a computational complexity of
O(m). In Step 2, we create n zigzag filtrations, compute their H0-
homology barcode, and then compute the consecutive bottleneck
distances. The respective complexities are O(nm), O(nmα(m)),
and O(nm1.5), where α is the inverse Ackermann’s function
(approximately constant in practice) [18]. Last, Step 3 consists
of one computation of zigzag persistence, which therefore has a
computational complexity of O(nα(n)). In general, the complexity
of the process is O(nm1.5). We should mention, however, that our
personal implementation of the persistence algorithm does not
reach the complexity mentioned above and can potentially yield
longer execution times. In our supp. material (Sec. C.3), we give
the running times observed in practice for eight temporal graphs.

6 DATASETS

Our usage scenario and user study explore the first day of data
from two real-world and face-to-face temporal graphs collected
in educational environments, the Primary School [23] and the
High School [40] networks. We have chosen these graphs as they
have been extensively analyzed in the context of temporal graph
visualization [25], [34], [47], [48], [63], [67], [68] and because
they contain relevant node metadata information.

The first day of the Primary School network [23] contains 236
nodes (students and teachers from the first to the fifth grade, each
having classes A and B) and 60,623 edges, which represent face-
to-face interactions. There are 1,555 timestamps in the original
resolution (r = 1), each comprising a 20-sec interval. Data were
collected from 8:45 am to 5:20 pm. There is a lunch break from
12pm to 2pm and two smaller breaks (20-25 min), one in the
morning (around 10:30am) and one in the afternoon (around
3:30pm). Each of the 10 school classes has an assigned teacher.
For convenience, we will refer to each class using simple terms,
for example, 1B to refer to “first grade, class B”.

The High School network [40] contains face-to-face interactions
between students from nine classes related to different subjects:
chemistry and physics (classes PC and PC1), mathematics and
physics (classes MP, MP1, and MP2), engineering (class PSI),
and biology (classes 2BIO1, 2BIO2, and 2BIO3). The first day
contains 312 nodes and 28,780 edges distributed in 899 timestamps
(a 20-sec interval each) when adopting the original resolution.

7 USAGE SCENARIO

We focus on two types of analysis. First, we demonstrate the
suitability of a suggested resolution for analyzing the Primary

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/raphaeltinarrage/ZigzagNetVis

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

ZigzagNetVis
Demo

Close diagrams

t (1) = 640 Ok

t (2) = 710 Ok

t (3) = 800 Ok

A

B

t (1) = 640

t (2) = 710

t (3) = 800

time = 0 200 400 600 800 1000 1200 1400

1B 2A 2B 3A 3B 4A 4B 5A 5B1A Tch

C

D

E

Node id: 1746

Category: Tch

F

(i) (iii)(ii)

timestamp

c
o

n
n

e
c

te
d

 c
o

m
p

o
n

e
n

t

Select by connected componentSelect by label See flows under interaction Bottom-based ord.G H

Fig. 9. ZigzagNetVis system prototype, an interactive and web-based system with linked views designed to assist the analysis of temporal graphs by
highlighting connected components’ structure and evolution. (A) Colored barcode with bottom-based ordering that highlights the longest connected
component in the graph — note that (i), (ii), and (iii) represent time intervals with few connected components compared to others. (B) Timestamp
markers indicating the three timestamps being depicted by (C-E) the three node-link diagrams. (F) Tooltip showing extra information. (G) Users can
select groups of nodes by label or by connected component. (H) Users can choose between two available component positioning strategies.

School and the usefulness of our colored barcode and system to
assist in this analysis. Later, we show that the patterns found
using ZigzagNetVis are comparable to those identified using
LargeNetVis [34], a state-of-the-art approach.

7.1 Exploring the Primary School network

ZigzagNetVis suggested the resolutions r = 8, 18, 76, 154, and
282 for the Primary School. Fig. 9(A) shows our colored barcode
for the median resolution r = 76, empirically chosen among the
suggested ones due to its interesting patterns. This visualization
was produced after (i) filtering out components with less than 10
nodes and 10 timestamps and (ii) selecting the component with the
longest duration. Disregarding the component selection (we will
discuss it later on), we can already enumerate some patterns and
interesting behaviors in the graph data. First, we see that most of
the non-selected components (i.e., components with low opacity in
Fig. 9(A)) are composed of students from a single class, along with
their teacher (tasks T1, T2). This is expected since these students
were having classes in their respective classrooms. This pattern
can also be seen in Fig. 10, which shows the same network and
resolution using a different ordering.

There are also time intervals with few connected components
compared to others, possibly indicating school breaks (one in
the morning, lunch break, and another in the afternoon — see
Fig. 9(i,ii,iii), respectively) (tasks T2, T3). The first time we have a
single component in the graph delineates the beginning of lunch
break (see the selected component near timestamp t = 580 in
Fig. 9(A)) (task T1). As the students go home for lunch [23],
we observe a decrease in the number of nodes in the graph (see
just after timestamp t = 600) (tasks T2, T3). During lunch, this
component is eventually decomposed into two parts, as illustrated
in Fig. 9(A,D)(t = 710), one containing students from classes 1A,
1B, 2A, 2B, 3A and the other containing a few other students from

c
o

n
n

e
c
te

d
 c

o
m

p
o

n
e
n

t

1B 2A 2B 3A 3B 4A 4B 5A 5B1A Tch

0 200 400 600 800 1000 1200 1400
timestamp

Fig. 10. Colored barcode with center-based ordering for the Primary
School and the suggested resolution 76.

3A and 3B, 4A, 4B, 5A, 5B (task T1). This division is explained by
the location of the students that stay at the school: some children
stay in the cafeteria while others stay at the courtyard [23]; these
groups encounter each other when they switch places, leading to a
single component again (see Fig. 9(A,E)(t = 800)). Note also the
absence of teachers during the lunch break: they are present at first
(see Fig. 9(A,C,F)(t = 640)), but they leave (there are no teachers
in t = 710 and t = 800, for example) and come back near the end
of the lunch break (task T3), when we start seeing many connected
components in the graph again (task T2).

7.2 Comparison with LargeNetVis
To validate the colored barcode, we performed a direct comparison
with LargeNetVis [34], an established approach to visualize large
temporal networks. To be coherent with the partition timeslicing
used by LargeNetVis, we decided to use partition timeslicing in
ZigzagNetVis as well (see Sec. B.2 in our supp. material for a
visual comparison between partition and sliding timeslicing). We
also forced the number of timeslices in LargeNetVis to be equal to
the number of partitions in ZigzagNetVis for a fair comparison.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

1B 2A 2B 3A 3B 4A 4B 5A 5B1A Tch

I

II

III

c
o

n
n

e
c

te
d

 c
o

m
p

o
n

e
n

t

partition
1 5 10 15 20 25

I

II

III

Selection I

(a) ZigzagNetVis

community size: 2 49

Selection III - LargeNetVisSelection III - ZigzagNetVis

c
o

m
m

u
n

it
y

1
timeslice

5 10 15 20 25

(b) LargeNetVis

(c) (d) (e)

Fig. 11. Comparison between (a) ZigzagNetVis with bottom-based
ordering and (b) LargeNetVis highlighting three distinct patterns (I-III) in
the Primary School network.

Using the Primary School network, Fig. 11 shows a comparison
between our colored barcode and LargeNetVis’ Global View, also
showing node-link diagrams that support the comparison. The first
highlighted pattern refers to a single connected component on
ZigzagNetVis containing students and teachers from three classes
(4A, 5A, 5B) (Fig. 11(a,I)) and the two equivalent communities
from LargeNetVis (Fig. 11(b,I)). When analyzing the corresponding
node-link diagrams (Fig. 11(c)), we see that these two communities
form a single connected component thanks to a single edge (dotted
in red) linking two teachers (task T1). Also, we see that students
from class 4A interact with each other but not with the other
two classes (5A and 5B); on the other hand, students from 5A
interact with students from 5B and vice-versa (T1). This finding
is supported by the fact that students in the same class interact
more often with themselves than with students in other classes
and that the same goes for same-grade students. Note also that
LargeNetVis only allows us to identify the school classes that are
found in a community through the node-link diagram. However,
this information is immediate with ZigzagNetVis’ colored barcode.

Regarding the second pattern (Fig. 11(a-b,II)), both layouts
were able to faithfully represent the continuous level of interactions
involving students in class 2B and their teacher (task T2). Once
again, note that the colored barcode already shows the school
class involved in the interactions. Regarding the third pattern, the
colored barcode highlights a component that contains students
from five different classes interacting with each other during
lunch break (Fig. 11(a,III)). When analyzing the node-link diagram
(Fig. 11(d)), we see several interactions between these students
during that period, i.e., the component is strongly connected (task
T1). In LargeNetVis, due to the nature of the community detection
algorithm, this strongly connected component was divided into
seven small communities, which impaired the finding of this
strongly connected group (see Fig. 11(b,III) and Fig. 11(e)).

Each layout has advantages and disadvantages depending on
the user task. We aimed to demonstrate that our approach compares
to well-validated visualizations, producing equally relevant results.

8 USER STUDY

8.1 Participants and Experiment setup
The experiment recruited 27 participants, including undergraduates
(9), Master’s students (6), Ph.D.s candidates (7), postdocs (2) and
professors (1). According to their self-reports, 4 participants had
advanced knowledge in graphs, 4 in visualization, 2 in TDA, and 3
in Informatics in Education. We conducted the experiment using the
think-aloud protocol, a common technique to obtain a more accurate
perception of the participants’ thoughts [12]. To avoid participants
being influenced by our presence and not mentioning negative
aspects, we explicitly asked them to highlight our approach’s
limitations. Before the experiment, we conducted a pilot study with
two participants not included in the final analysis.

8.2 Questionnaire
First, the participants were presented with a 7-minute video tutorial
that introduced the concepts of graph, temporal resolution, and
connected components, and explained the proposed layout and
system functionalities. The questionnaire was divided into four
main sections: (i) background and experience; (ii) a hands-on
experience with defined tasks; (iii) nine questions that address the
Primary and High School networks; and (iv) Likert-scale questions
to collect the participants’ feedback.

The questions were designed to evaluate layout perception, test
functionalities, find patterns, and freely explore the given networks.
First, we assessed comprehension of the basic functionalities
through hands-on experience, where we asked the participants
to open the Primary School network using the default configuration.
Then, we asked them to verbally describe the definitions of some
concepts necessary to understand the experiment (e.g., connected
components and temporal resolution) and to follow a set of 12
simple tasks (ST1-ST12) to check if they were familiarized with
the system’s functionalities (e.g., shortcuts and interaction features).
They were also asked to validate our visualization by exploring the
Primary School network with resolutions r = 76 (SQ1-SQ3) and
r = 154 (SQ4-SQ6), and the High School under r = 46 (SQ7-SQ9).
Due to time limitations, we focused on analyzing only these three
resolutions, all suggested by ZigzagNetVis using sliding-window
timeslicing. In addition, our focus on school networks aimed to
provide participants with familiar contexts for understanding nodes
and edges, which have the same meaning on both networks.

The SQ1-SQ9 questions were open questions in which we
guided the participants to identify specific patterns (SQ1-SQ3 and
SQ7-SQ8), asked them to compare the results of two resolutions
(SQ4, SQ5), and encouraged them to explore the system freely
(SQ6, SQ9). Finally, we evaluated the participants’ preferences for
ZigzagNetVis using a series of Likert-Scale questions (LQ1-LQ10)
and asked them to describe the positive and negative aspects of the
system. The complete description of the questions and expected
answers are available in the supp. material (Sec. D.1).

After preliminary tests, we fixed both filters for bars in 10
(recall Sec. 5.3) to avoid receiving too many different results,
which would hinder the analysis of the collected data.

8.3 Results

Hypotheses on data analysis. All participants answered at least
one of the points that we expected for each open question (SQ1-
SQ5, SQ7, SQ8). Also, during the experiment, we encouraged
participants to raise hypotheses that could justify specific patterns

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

1B 2A 2B 3A 3B 4A 4B 5A 5B1A Tch

0 200 400 600 800 1000 1200 1400

I
I

II
III

IV

timestamp

c
o

n
n

e
c
te

d
 c

o
m

p
o

n
e
n

t

II (t = 510) III (t = 667) IV (t = 990)

Fig. 12. Four patterns (I-IV) mentioned via SQ6 (Primary School, r = 154).
The colored barcode adopts bottom-based ordering.

considering a school environment. For instance, in question SQ1
(Primary School), we asked them to evaluate the relationship
between students and teachers from classes 4A, 5A, and 5B
(which form a connected component at some point, as shown in
Fig. 11(I)). All participants mentioned that class 4A was far from
the others. Furthermore, 62% of the participants identified that the
two subgroups (4A, 5A-5B) were linked by an edge that involved a
teacher; 37% noticed that this edge actually involves two teachers.
The hypotheses put forward to explain the strong interaction
between classes 5A and 5B mentioned that, since both classes
belong to the fifth grade (30% remembered this information), it
could be due to interdisciplinary events such as laboratory activity
(22%) or group studies (14.81%).

Exploratory analyses. We proposed questions where the par-
ticipants could freely explore the system and identify patterns
not described by other questions (SQ6, SQ9). More than 85%
of the participants mentioned new patterns or anomalies in their
exploratory analyses of the Primary School (SQ6), and 74% found
new ones in the High School network (SQ9). Among the patterns
and anomalies found, the most cited for the Primary School using
r = 154 were (Fig. 12): (I) merges and splits between related
students; (II) peaks of interaction in a short time period; (III) a
single connected component containing all students and teachers
(even though the teachers leave the network at some point); and
(IV) same-class students divided into two connected components.
Although this question was not designed to compare patterns
identified in different resolutions, most participants tried to compare
patterns visible with r = 154 with those from r = 76. For instance,
Fig. 9(A,D) illustrates that there are two connected components
around timestamp 710 when using r = 76, which is hidden in
the higher resolution (see Fig. 12(III)). About that, a participant
mentioned that “you can clearly see how patterns vary according
to the selected resolution when analyzing the primary school”.

The participants identified three common patterns in the second
exploratory question (SQ9, High School). The first refers to peaks
of activity in the same connected component over time (see
Fig. 13(I)). In the High School, there are also intervals where
all students merge into a single and highly connected component.
The participants could see that these intervals correspond to break
periods, lunch break, or group activities. The second pattern is
related to a small connected component just before a large peak

2BIO2 2BIO3 MP MP1 MP2 PC PC1 PSI2BIO1

0 100 200 300 400 500 600 700 800

c
o

n
n

e
c
te

d
 c

o
m

p
o

n
e
n

t

I I I I

II

III

timestamp

Fig. 13. Three patterns (I-III) mentioned via SQ9 (High School, r = 46).
The colored barcode adopts bottom-based ordering.

(Fig. 13(II)). Based on the node-link diagram, there were just
a few connections between the students, which represented the
beginning of a group activity or a break. Finally, the third pattern
refers to connected components with varying lengths over time
but composed of single classes (Fig. 13(III)). According to the
participants, they allow one to see the class hours, but, contrary to
the primary school, where the number of students per component
is quite stable over time during classes (see Fig. 9), this network
presents classes with non-uniform activity over time.
Interactive features. We also validated the functionalities mainly
used to answer representative questions. In summary, the partici-
pants preferred to move timestamp markers rather than type new
timestamp values for the exploratory tasks. On average, the feature
used mainly in the node-link diagrams was zoom (41.48%), which
is justified by the small size of nodes and edges initially applied.
Not least, the similar rate of usage involving selection by label
(44.44%) and by component (41.48%) indicates that both were
appreciated. Please refer to the supp. material (Sec. D.2) for details.
Likert-scale questions and participants’ feedback. Fig. 14 shows
the participants’ assessments of the colored barcode’s (LQ1)
and node-link diagrams’ (LQ2) quality and usefulness, their
coordination and interaction (LQ3), and the system’s intuitiveness
and ease of use (LQ4), usefulness (LQ5), and response time
(LQ6). There were also questions related to specific tasks, such as
understanding the temporal evolution (LQ7), comparing structure
at different times (LQ8) or at node level (LQ9), and analyzing the
network under different resolutions (LQ10).

First, considering the negative evaluations, three participants
mentioned that the system was not intuitive (LQ4) because it lacked
a “help” button summarizing the main functionalities. Regarding
response time (LQ6), two users complained about loading time,
although the system’s interactions worked satisfactorily. One of the
experts added that “I can’t say about speed, for the tested datasets
I agree but generally I don’t know, it depends on the network size”.
At last, about the analysis under different resolutions (LQ10), two
participants considered that the comparison was difficult since it
depended on the memory load of the user.

Besides the negative evaluations, ZigzagNetVis achieved a 95%
of acceptance rate for the raised criteria (LQ1-LQ10), considering
the average agreement (29%) and strong agreement (66%) rates.
Several participants raised positive points about the system and
colored barcode, claiming that “The proposed system is simpler
and more efficient in analyzing temporal networks than the other
tools I know”, and “the colored barcode is great (pretty and
very interesting), both for the color distinction and the subtlety of
increases and decreases in a bar over time”. For another participant,

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

23 77

3 15 82

15 85

11 49 40

19 81

LQ1

LQ2

LQ3

LQ4

LQ5

7 3 45 45

30 70

7

7

30 63

38 55

LQ6

LQ7

LQ8

LQ9

LQ10

33 66

Frequency (%) Frequency (%)

Strongly disagree Disagree I don’t know Agree Strongly agree

Fig. 14. Participants’ feedback using a Likert scale.

“It is the union of both views (colored barcode and node-links) that
is most useful. Each alone would not allow us to understand well
what is happening”. At last, one expert complemented that “the
barcodes are very good for quickly visualizing long interactions,
while the node-link diagrams allow you to understand to what
degree these interactions are happening”.

It should be noted that we tested the system with two colorblind
participants, who validated that there were enough features (such
as tooltips, different color scales, and interactive color legend) to
perform all tasks without hindering the analyses. Finally, some
participants suggested improvements already incorporated, such as
the selection of multiple labels, improvements in readability (e.g.,
better contrast in menus) and the mentioned “help” button.

9 ANALYSIS OF THE SUGGESTED RESOLUTIONS

This section is devoted to the analysis of the resolutions suggested
by ZigzagNetVis’ methodology. We aim to demonstrating empiri-
cally that these suggestions are relevant. As mentioned in Sec. 2,
few studies have tackled the problem of choosing a resolution.
In particular, no reference data sets are available. As a means of
comparison, we will use, for each of the temporal graphs considered
in this paper, the resolutions used in the literature — that we stress
are mainly chosen “by hand”. However, a direct comparison cannot
be made. Indeed, as pointed out in Sec. 4.1, one cannot define
“optimal” resolutions, but rather meaningful ranges of resolutions.
Consequently, to assess the quality of ZigzagNetVis’ suggested
resolutions, one must analyze them qualitatively by understanding
the behaviors of the corresponding dynamic graphs and comparing
them with the literature. This study will be conducted in Sec. 9.1, in
particular using the visual tool provided by the bottleneck distance.
In Sec. 9.2, we extend this study by comparing our suggestion
curves with commonly used feature of temporal graphs, revealing
when they coincide and when they complement each other.

9.1 Visual justification with colored barcodes

Visualization of suggested values. Tab. 1 presents the resolutions
suggested by our approach, using sliding-window timeslicing and
considering eight different graphs of varying characteristics and
sizes. The corresponding normalized suggestion curves are shown
in Fig. 6 of our supp. material. To construct the curves for these
eight temporal graphs, we used, respectively, a maximal time
of 2000, 2000, 2000, 20000, 1300, 1400, 3000, and 1000, and
resolutions up to a quarter of these values. Note that the maximal
time for Primary and High Schools covers the first day, as in Sec. 6.

Fig. 15 shows the colored barcodes for four networks in Tab. 1
to emphasize the usefulness of both the resolution suggestion
method and this visualization in assisting the analysis of real-world
networks. The colored barcodes exhibit the entire graphs, except

TABLE 1
Suggested resolutions for eight distinct networks.

Network Suggested resolutions Used in the literature
Primary School [23] 8, 18, 76, 154, 282 10 [67], 25 [47]
High School [40] 8, 12, 46, 92, 104 18 [63], 180 [25], 45 [68]
Hospital [64] 14, 26, 32, 74, 352 {9, 45, 60, 90} [33], [35], 69 [50]
InVS [24] 66, 148, 158, 164, 202 —
Museum [27] 6, 12, 36, 52, 320 1 [49]
Enron [29] 6, 12, 24, 36, 68 1 [21], [36], [62], 2 [47], 5 [50],

{1, 7, 15, 30, 90, 180} [44],
{1, 5, 12} [58]

Conference [27] 12, 22, 30, 42, 224 30 [21]
Sexual [52] 6, 160, 186, 226, 240 1 [49]

for the InVS network (Fig. 15(c)), which shows only the first day
of data to better present the visual pattern we want to discuss.

Even though the Enron network (Fig. 15(a)) does not provide
node metadata, it is easy to identify global patterns that do not
rely on such information, for example, the gradual increase in
the number of connections and node activity over time [29]. The
increasing size of the main connected component, followed by an
abrupt decrease near the end of the network, is related to important
events in the context of these network data, including the CEO
resignation and bankruptcy. Temporal patterns related to circadian
rhythms can also be identified in face-to-face networks, as shown
in Fig. 15(b) for the Hospital network [64]. We can easily identify
intervals with bursts of events (five days) followed by intervals
with few or no interaction (four nights).

Incorporating node metadata greatly improves network analysis
by allowing us to observe local patterns in the data. In the InVS
network [24], for example, most connected components contain
only nodes that share the same label (in this case, employees of
the same department), as illustrated in Fig. 15(c). That makes
sense in the context of this network, as most of the employees are
of type “residents”, i.e., they interact mainly with others in their
own department. This is a pattern we do not observe in the Sexual
network [52] (Fig. 15(d)). Since it is a bipartite graph, all connected
components will have at least one node from each label, i.e., a
buyer and a seller. Note that the Sexual network is much larger
than the others we have considered. Its original form (resolution 1)
contains 12,157 nodes, 34,060 edges, and 1,000 timestamps, each
representing a 1-day interval [52].

Resolutions used in the literature. In general, studies that analyze
temporal graphs use resolution directly or indirectly. Some focus on
comparing different resolutions [44], [47], [58], while others select
arbitrary resolutions according to the analysis needs [50], [62],
[68]. For instance, some works prioritize high resolution values for
global pattern identification [25], [68], while others focus on small
ones and local patterns [21], [49], [62]. Note that ZigzagNetVis
suggests resolutions suitable for both types of analysis (Tab. 1).

Tab. 1 summarizes our suggested resolutions and others used
in literature for eight popular graphs. For the well-known Enron
network [29], while some studies use the original resolution r = 1
as an arbitrary value to perform local analyses [21], [36], [62],
others compare resolutions coming from a small set of arbitrary
values [44], [58]. For example, Sulo et al. [58] analyze this network
under resolutions r = 1, r = 5, and r = 12, highlighting the different
patterns each resolution allows one to identify. According to the
authors, the pattern “CEO resignation” is easily identified when
adopting resolutions between 4 and 7 [58]. Note that ZigzagNetVis
suggested resolutions r = 6 (therefore included in the mentioned
“good-quality” range) and r = 12 (a resolution also used by the

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

timestamptimestamp
0 200 400 600 800 1000 1200 1400 1600 1800

c
o

n
n

e
c

te
d

 c
o

m
p

o
n

e
n

t

DSE SFLE DMCTDIQS SRH

0 100 200 300 400 500 600 700 800 900

c
o

n
n

e
c

te
d

 c
o

m
p

o
n

e
n

t

BUY SELL

0 2000 4000 6000 8000 10000 12000 14000 16000

c
o

n
n

e
c

te
d

 c
o

m
p

o
n

e
n

t

timestamp

MED NUR PATADM

(d)(c)

0 200 400 600 800 1000 1200
timestamp

c
o

n
n

e
c

te
d

 c
o

m
p

o
n

e
n

t

(a) (b)

Fig. 15. Colored barcodes with bottom-based ordering for four networks from Tab. 1. (a) Enron with r = 6. (b) Hospital with r = 74. (c) InVS with
r = 66. (d) Sexual with r = 6. All resolutions adopted were suggested by our method (see Tab. 1). There is no component filtering except for the
Sexual network (f), whose colored barcode shows only components with at least 10 node members and a duration of at least 10 timestamps.

authors). The suggestion of a resolution that matches exactly the
one used by previous studies also occurred with the Conference
network (r = 30, as depicted in Tab. 1).

As another example, some studies mention the same circadian
rhythm pattern discussed in Fig. 15(b) for the Hospital network,
i.e., days with bursts of activity and idle nights [33], [35], [50].
ZigzagNetVis and these studies allow one to identify this pattern,
even though they use different but close resolution values. Our
method also suggests a resolution many times greater than those
used in the literature for this network (r = 352). This is probably
the resolution in which the idle intervals are lost. In general, our
approach suggests resolutions that are close to those used by the
related literature. In addition, it can also suggest other resolution
values that potentially lead to unexplored visual patterns.

Resolution comparison and explainability. As discussed in
Sec.2.3, the bottleneck distance offers a clear interpretability.
Namely, the distance dB(B,B′) between two barcodes is always
caused by a pair of bars or a bar alone, that is, such that the
cost of this pair, or of this bar alone, is equal to the distance.
Consequently, highlighting these bars allows us to observe precisely
where the barcodes differ the most. This is particularly useful for
understanding the suggested resolutions of ZigzagNetVis.

Taking into account the first day of the Primary School network,
the algorithm suggests resolution r = 8 (see Tab. 1). The resolution
just before this one is r = 6, since sliding-window timeslicing
only accepts even values of resolutions. In order to visualize what
structural change has occurred between resolutions 6 and 8, we
show in Fig. 16(a,b) the corresponding colored barcodes, while
highlighting the pair of bars that provoked the bottleneck distance.
As we can see, when going from r = 6 to r = 8, a large bar is
formed, which lasts throughout the observation period. Please refer
to the supp. material (Sec. C.2.2) for other networks.

Classification of structural changes. A manual analysis of the
resolutions suggested by ZigzagNetVis compels us to classify the
structural changes into three categories. The first category contains
the initial resolutions. We have observed, in the suggestion curves,
the phenomenon of a chaotic start, followed by a relatively flat
phase. These resolutions correspond to critical points indicating the

1B 2A 2B 3A 3B 4A 4B 5A 5B1A Tch

(a) (b)

c
o

n
n

e
c

te
d

 c
o

m
p

o
n

e
n

t

c
o

n
n

e
c

te
d

 c
o

m
p

o
n

e
n

t

0 400 800 1200
timestamp

0 400 800 1200

timestamp

Fig. 16. Visualization of the bottleneck distance for the first day of the
Primary School. (a-b) r = 6 and r = 8 showing only bars with height larger
than 50. Highlighted components represent the bars that differ the most
between these two resolutions, according to the bottleneck distance.

formation of the first persisting connected component. A second
type of easily identifiable structural change is that of the connection
between days of the temporal graph. At the critical resolution
connecting two consecutive days, assuming no activity is recorded
during the night, the suggestion curve shows a significant peak.
The last group of resolutions generally contains those that cause a
persistent connected component to merge with a larger one.

This classification allows, at least heuristically, to divide the
range of resolutions into three intervals: a chaotic start, followed
by a range where the resolution curve only exhibits relevant peaks,
and at last a few values caused by the merging of the days. This
observation can be used when the user, through manual inspection,
seeks relevant resolutions to study. We stress that the last case is
not observed in the figures the Primary and High School networks,
since we selected resolutions smaller than the length of a night.

9.2 Comparison with other features
We now compare our novel method with existing techniques. In
the literature, features of temporal graphs are of two sorts: either
they are features of (non-temporal) graphs, adapted to the temporal
case by taking their mean of their list over all the snapshots, or
they directly depend on the temporal structure [44], [54].
Geometric and topological features of snapshots. Let G be a
temporal graph to which we apply a sliding-window timeslicing of
resolution r. Given a snapshot Gt , we consider:

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

10 20 30 100 200 300 400 500

Snapshot features - PrimarySchool

Vert.
Edges
Density
CC
Degree
Trans.
Suggest.

10 20 30 100 200 300 400 500

Snapshot features - HighSchool

Vert.
Edges
Density
CC
Degree
Trans.
Suggest.

Fig. 17. Suggestion curve and derivative of the mean snapshot features
for the networks Primary School (top) and High School (bottom). The x
axis represents the resolution values. The curves are normalized, and a
few interesting values are highlighted with a dashed line.

• its number of nodes and edges, denoted N(t) and E(t),
• its density D(t) = 2E(t)/(V (t)(V (t)−1)),
• its number of connected components CC(t),
• the mean degree MD(t) of its nodes,
• its transitivity T (t), defined the ratio between the number of

triangles and triads (i.e., pairs of edges sharing a vertex).
Taking the mean value of such a feature over all times t yields
a feature of the temporal graph G. We denote them respectively
N(r), E(r), D(r), CC(r), MD(r) and T (r), making explicit the
dependence on the resolution.

Note that, when increasing the resolution r, the features N(r),
E(r) and D(r) increase. That is, they are non-decreasing functions.
In general, we except that abrupt changes in these values reflect the
fact that the temporal graph exhibits a new behavior. To visualize
such changes, one can plot these curves or, more efficiently, their
derivative. These curves are represented in Fig. 17 for the Primary
and High School networks, and in Fig. 8 of our supp. material
for the other graphs. Since we are only interested in the peaks or
qualitative behaviors of these curves, and not their absolute values,
we normalize them so that their maxima equals one. In order to
ease the reading, the x-axis is divided in two windows, and the
curves are normalized both times.

A manual inspection of these curves allows us to compare them
with our suggestion curve. For instance, in the Primary School
Network, one sees that the first peak, at r = 8, corresponds to the
global maximum of the derivative of the number of connected
components. Besides, the peak at resolution 154 seems to appear
simultaneously as the transitivity curve shows a constant derivative.

Similar observations can be made on the High School network.
The peaks of our suggestion curve found at resolutions 46, 204, and
216 correspond, respectively, to global maxima of the derivative
of the number of connected components, transitivity, and density.
Besides, the peaks at resolutions 12 and 56 correspond, respectively,
to a global minimum of the derivative of the number of connected
components and a significant local maximum of the transitivity.

These observations suggest that our curve captures information
coming from various features of graphs. However, some peaks
remain unexplained, and hence we will study other features in
the paragraphs below. It must also be noted that certain features’
peaks do not correspond to a peak of the suggestion curve. This
may be caused by the fact that the suggestion curve, based on the
homology group H0, is blind to certain purely geometric properties
of graphs, and works only in terms of connected components.

Distribution of features of snapshots. Instead of taking the
average value of a feature over all the snapshots, we can compare

10 20 30 100 200 300 400 500

Distribution features - PrimarySchool

Vert.
Edges
Density
CC
Degree
Trans.
Suggest.

10 20 30 100 200 300 400 500

Distribution features - HighSchool

Vert.
Edges
Density
CC
Degree
Trans.
Suggest.

Fig. 18. Consecutive distances between the distribution of the snapshot
features for the networks Primary School (top) and High School (bottom).
The x axis represents the resolution values. The curves are normalized,
and a few interesting values are highlighted with a dashed line.

their distribution over time. To do so, we consider the entire curves

fN,r : t 7→ N(t), fE,r : t 7→ E(t), etc.

Given two consecutive resolutions r and r+2, we compare these
curves via their ℓ2-norm

∥ fN,r− fN,r+2∥2, ∥ fE,r− fE,r+2∥2, etc.

These are functions of r, on which we expect to observe abrupt
changes in the graph’s behavior. These curves are represented in
Fig. 18 for the Primary and High School networks and in Fig. 9 of
our supp. material for the other graphs.

As before, one draws correspondences between the suggestion
curve and these features. For example, on the Primary School
network, the first suggested resolution, r = 8, happens precisely
during an abrupt change in the derivative of all the curves. Besides,
the two peaks at resolutions 120 and 154 delimit the only interval
where the curve of transitivity increases and then decreases. This
last correspondence has already been observed in the last paragraph
while considering the mean transitivity of the temporal graph.

In a similar fashion, on the High School network, one observes
that the selected resolution 46 corresponds to an abrupt change in
the curve built from transitivity. In a few words, comparing the
distribution of the snapshot features offers compatible but also
complementary information to the average values alone.

Global features. Lastly, we consider features of dynamic graphs
that do not come from features of snapshots. Given a temporal
graph G, timesliced at a resolution r, we consider:
• its burstiness B(r) and average lifecycle LC(r), defined in [53].
• its stability S(r) and fidelity F(r), defined in [15].

Moreover, we will also consider the total persistence T P(r) of its
corresponding zigzag persistence module, defined as the quadratic
mean of the length of its bars. Finally, we will employ the curve
MDS(r) defined in [25]. It consists of the multidimensional scaling
(MDS) in dimension 1, whose input is the set of bottleneck
distances between the persistence barcodes of the temporal graph
for all the resolutions considered. These curves are represented in
Fig. 19 for the Primary and High School networks and in Fig. 10
of our supp. material for the other graphs.

On all the graphs, one observed a high correlation between our
suggestion curve and the curves of MDS and total persistence. This
is expected since all these features are related to the persistence
barcodes of the zigzag modules. We also observe that the peak at
r = 18 of our suggestion curve for the Primary School corresponds
to a global minimum of the lifecycle. The same occurs with r = 12
for the High School network.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

10 20 30 100 200 300 400 500

Global features not derived - PrimarySchool

MDS
Tot. pers.
Lifecycle
Burstiness
Suggest.

10 20 30 100 200 300 400 500

Global features not derived - HighSchool

MDS
Tot. pers.
Lifecycle
Burstiness
Suggest.

Fig. 19. Global features as functions of the resolution parameter, for the
networks Primary School (top) and High School (bottom). The x axis
represents the resolution values. The curves are normalized, and a few
interesting values are highlighted with a dashed line.

Regarding stability and fidelity, we observe that the curves
r 7→ S(r) and r 7→ F(r) are convex and no abrupt change can
be observed. Instead, we consider a relevant feature that can be
defined from them: the point of intersection between the normalized
stability and the inverse of the normalized fidelity reveals the
resolution value that balances the best between these antagonists’
values. The resolutions suggested by this strategy are r = 24 and
r = 12 for the Primary and High School, respectively. Note that
ZigzagNetVis also suggests r = 12 for the High School.

In conclusion of this section, the peaks of the suggestion curve
can, most of the time, be mapped to peaks or bumps of other
features in the literature. We stress that our analysis does not reveal
the exact nature of this connection; we simply showed how the
suggestion curve can be understood as related to other features.

10 DISCUSSION AND LIMITATIONS

Timeslicing. ZigzagNetVis is not designed for graphs with con-
tinuous real-valued timestamps as timeslicing approaches fail
to represent these graphs faithfully [34]. Considering graphs
with discrete times, we have described two uniform timeslicing
approaches that may be used with ZigzagNetVis: partition and
sliding-window-based. Regardless of the chosen approach, the
suggested resolution is a global and static value that is used to
represent the entire graph. In future work, we intend to investigate
whether non-uniform timeslicing would lead to better results.

Visual scalability. Our colored barcode is better suited for small to
mid-size graphs, in terms of the number of timestamps or connected
components (even though too few and large components also hinder
the analysis). Although we provide filters and interactions that help
with large networks, we intend to improve our visual scalability to
better meet this type of network. Specifically, we plan to extend the
representation to deal with more timestamps and components, e.g.,
by collapsing/expanding based on the graph dynamics. We also
intend to incorporate sampling strategies and more sophisticated
filters, e.g., based on structural properties such as the strength of
the connected components or edge weights (explicit or inferred).

Resolution comparison. Some participants would also like to
simultaneously compare suggested resolutions with each other and
with non-suggested ones. Although one could open the system
many times or perform a side-by-side comparison using multiple
instances of the system, we believe that incorporating such a
capability into our system would enhance the identification of
patterns coming from different resolutions, help users to understand
and follow changes that regions of interest suffer when varying

resolutions (recall Sec. 9.1), and also increase the user’s confidence
in the suggestions or reveal room for improvement in the suggestion
procedure, e.g., by incorporating user feedback.

Zigzag persistent homology. Through the lens of homology, all
connected components are treated identically, regardless of the
number of nodes they contain. Consequently, in extreme cases, a
structural change in the temporal network can be provoked by a
single node. Since this situation might not be convenient for the
analysis of large networks, where relevant features are commonly
understood as those involving many nodes, we intend to design
and adopt a variation of the bottleneck distance that would take
into account the number of nodes. Besides, our work focused on
homology H0. The inclusion of higher topological features, such
as in [42], may contain further relevant information, that we intend
to add in future works. Not least, we adopted in this work a simple
peak detection via their prominence, which is well established
and easy to interpret. In a follow-up study, we intend to test more
sophisticated approaches, for example, peak detection via Z-scores,
or TDA-inspired techniques based on peaks’ persistence.

Running time. Tab. 1 in our supp. material shows that, in practice,
the most time-consuming step of our algorithm is the computation
of m persistence diagrams, m being the number of resolutions
tested. To reduce this cost, we could take advantage of the fact
that two consecutive resolutions should yield barcodes close to
each other; an idea known as updating barcodes [19]. Although we
have not investigated this aspect further, since the running times
obtained empirically were satisfactory, such a technique could open
the door to larger-scale graphs.

Visual improvements and new features. Based on feedback from
reviewers and participants, we’ve added new features to the system
prototype: a center-based component positioning, merge/split visual
representation, and a table with quantitative measurements for
suggested resolutions. While participants did not test these features,
they do not directly affect the results outlined in this paper.

11 CONCLUSION

This paper presented ZigzagNetVis, a methodology that suggests
potentially relevant temporal resolutions for graph analysis using
zigzag PH, a well-established technique from TDA, and the tool
system that implements it. Our methodology can be summarized
as follows. First, we build persistence barcodes for candidate
resolutions. Then, we compute the bottleneck distance between
pairs of barcodes and build a suggestion curve based on the distance
values. Finally, we suggest resolutions based on the curve’s peaks.
ZigzagNetVis also incorporates a timeline-based visualization
inspired by the persistence barcodes of TDA. Our visualization
assists researchers and practitioners in exploring temporal graphs
by highlighting the connected components’ structure and evolution.
We validated ZigzagNetVis and our web-based and interactive
system prototype through a usage scenario and a user study with
27 participants, who assessed its usefulness and effectiveness.

ACKNOWLEDGMENTS

This work was supported by grants #2023/18026-8, #2021/07012-
0, #2020/10049-0, #2020/07200-9, #2022/13190-1, #2016/17078-
0 from São Paulo Research Foundation (FAPESP), by grant
#E-26/204.593/2024 from Carlos Chagas Filho Foundation for
Research Support of Rio de Janeiro State (FAPERJ), by Fundação
Getulio Vargas (FGV), by grant #311144/2022-5 from Conselho

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq).
The Article Processing Charge (APC) for the publication of this
work was funded by Coordenação de Aperfeiçoamento de Pessoal
de Nivel Superior - CAPES (ROR identifier: 00x0ma614). For open
access purposes, the authors have attributed a Creative Commons
CC BY license to any accepted version of the article.

REFERENCES

[1] J.-w. Ahn, C. Plaisant, and B. Shneiderman. A task taxonomy for network
evolution analysis. IEEE Trans. Vis. Comp. Graph., 20(3):365–376, 2014.

[2] M. E. Aktas, E. Akbas, and A. E. Fatmaoui. Persistence homology of
networks: methods and applications. Appl. Network Sci., 4(1):61, Aug
2019. doi: 10.1007/s41109-019-0179-3

[3] B. Bach, N. Henry-Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete, and
T. Grabowski. Small multipiles: Piling time to explore temporal patterns
in dynamic networks. Comput. Graphics Forum, 34(3):31–40, 2015. doi:
10.1111/cgf.12615

[4] B. Bach, E. Pietriga, and J.-D. Fekete. Graphdiaries: Animated transitions
and temporal navigation for dynamic networks. IEEE Trans. Visual
Comput. Graphics, 20(5):740–754, 2014.

[5] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of
dynamic graph visualization. Comp. Graph. Forum, 36(1):133–159, 2016.

[6] M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete.
Matrix reordering methods for table and network visualization. Comput.
Graph. Forum, 35(3):693–716, 2016. doi: 10.1111/cgf.12935

[7] P. Bendich, S. P. Chin, J. Clark, J. Desena, J. Harer, E. Munch, A. Newman,
D. Porter, D. Rouse, N. Strawn, et al. Topological and statistical behavior
classifiers for tracking applications. IEEE Trans. Aerosp. Electron. Syst.,
52(6):2644–2661, 2016.

[8] C. Bodnar, C. Cangea, and P. Liò. Deep graph mapper: Seeing graphs
through the neural lens. Front. Big Data, 4, 2021. doi: 10.3389/fdata.2021
.680535

[9] U. Brandes. Force-Directed Graph Drawing, pp. 1–6. Springer US,
Boston, MA, 2008.

[10] M. Brehmer and T. Munzner. A multi-level typology of abstract
visualization tasks. IEEE Trans. Visual Comput. Graphics, 19(12):2376–
2385, 2013. doi: 10.1109/TVCG.2013.124

[11] G. Carlsson and V. De Silva. Zigzag persistence. Found. Comput. Math.,
10(4):367–405, 2010.

[12] S. Carpendale. Evaluating information visualizations. Information
visualization: Human-centered issues and perspectives, pp. 19–45, 2008.

[13] F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba. Persistence-based
clustering in riemannian manifolds. J. ACM, 60(6):1–38, 2013.

[14] F. Chazal and B. Michel. An introduction to Topological Data Analysis:
fundamental and practical aspects for data scientists. Front. Artif. Intell.,
4, 2021.

[15] A. Chiappori and R. Cazabet. Quantitative evaluation of snapshot graphs
for the analysis of temporal networks. In R. M. Benito, C. Cherifi,
H. Cherifi, E. Moro, L. M. Rocha, and M. Sales-Pardo, eds., Complex
Networks & Their Applications X, pp. 566–577. Springer International
Publishing, Cham, 2022.

[16] A. Clauset and N. Eagle. Persistence and periodicity in a dynamic
proximity network. arXiv preprint arXiv:1211.7343, 2012.

[17] R. K. Darst, C. Granell, A. Arenas, S. Gómez, J. Saramäki, and
S. Fortunato. Detection of timescales in evolving complex systems.
Sci. Rep., 6(1):39713, 2016.

[18] T. K. Dey and T. Hou. Computing Zigzag Persistence on Graphs in
Near-Linear Time. In K. Buchin and E. Colin de Verdière, eds., 37th
International Symposium on Computational Geometry (SoCG 2021),
vol. 189 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
30:1–30:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 2021. doi: 10.4230/LIPIcs.SoCG.2021.30

[19] T. K. Dey and T. Hou. Updating barcodes and representatives for zigzag
persistence. arXiv preprint arXiv:2112.02352, 2021.

[20] B. Doppalapudi, B. Wang, and P. Rosen. Untangling force-directed
layouts using persistent homology. In 2022 Topological Data Analysis
and Visualization (TopoInVis), pp. 81–91. IEEE, 2022.

[21] B. Fish and R. S. Caceres. A supervised approach to time scale detection
in dynamic networks. arXiv preprint arXiv:1702.07752, 2017.

[22] J. Gamble, H. Chintakunta, and H. Krim. Applied topology in static and
dynamic sensor networks. In 2012 International Conference on Signal
Processing and Communications (SPCOM), pp. 1–5. IEEE, 2012.

[23] V. Gemmetto, A. Barrat, and C. Cattuto. Mitigation of infectious disease at
school: targeted class closure vs school closure. BMC infectious diseases,
14(1):695, Dec. 2014. doi: 10.1186/PREACCEPT-6851518521414365

[24] M. Génois, C. L. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin, and
A. Barrat. Data on face-to-face contacts in an office building suggest
a low-cost vaccination strategy based on community linkers. Network
Science, 3:326–347, 2015. doi: 10.1017/nws.2015.10

[25] M. Hajij, B. Wang, C. Scheidegger, and P. Rosen. Visual detection of
structural changes in time-varying graphs using persistent homology. In
2018 IEEE Pacific Visualization Symposium (PacificVis), pp. 125–134,
2018. doi: 10.1109/PacificVis.2018.00024

[26] P. Holme and J. Saramäki. Temporal networks. Phys. Rep., 519(3):97–125,
2012.

[27] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. Van den
Broeck. What’s in a crowd? analysis of face-to-face behavioral networks.
J Theor Biol, 271(1):166–180, 2011. doi: 10.1016/j.jtbi.2010.11.033

[28] S. Jung, D. Shin, H. Jeon, K. Choe, and J. Seo. Monetexplorer: A visual
analytics system for analyzing dynamic networks with temporal network
motifs. IEEE Trans. Visual Comput. Graphics, pp. 1–15, 2023. doi: 10.
1109/TVCG.2023.3337396

[29] P. S. Keila and D. B. Skillicorn. Structure in the enron email dataset.
Comput. Math. Organ. Theory, 2005. doi: 10.1007/s10588-005-5379-y

[30] W. Kim and F. Mémoli. Formigrams: Clustering summaries of dynamic
data. In CCCG, pp. 180–188, 2018.

[31] W. Kim, F. Mémoli, and Z. Smith. Analysis of dynamic graphs and
dynamic metric spaces via zigzag persistence. In Topological Data
Analysis: The Abel Symposium 2018, pp. 371–389. Springer, 2020.

[32] G. Krings, M. Karsai, S. Bernhardsson, V. D. Blondel, and J. Saramäki.
Effects of time window size and placement on the structure of an
aggregated communication network. EPJ Data Science, 1(1):4, May
2012. doi: 10.1140/epjds4

[33] C. Linhares, J. Ponciano, L. Rocha, J. G. Paiva, and B. Travençolo.
Análise temporal de uma rede de contato hospitalar utilizando técnicas de
visualização de informação. In XVII Workshop de Informática Médica.
SBC, Porto Alegre, RS, Brasil, 2017. doi: 10.5753/sbcas.2017.3696

[34] C. D. G. Linhares, J. R. Ponciano, D. S. Pedro, L. E. C. Rocha, A. J. M.
Traina, and J. Poco. LargeNetVis: Visual exploration of large temporal
networks based on community taxonomies. IEEE Trans. Visual Comput.
Graphics, pp. 1–11, 2022. doi: 10.1109/TVCG.2022.3209477

[35] C. D. G. Linhares, J. R. Ponciano, F. S. F. Pereira, L. E. C. Rocha, J. G. S.
Paiva, and B. A. N. Travençolo. A scalable node ordering strategy based
on community structure for enhanced temporal network visualization.
Comput. Graphics, 84:185 – 198, 2019.

[36] C. D. G. Linhares, B. A. N. Travençolo, J. G. S. Paiva, and L. E. C. Rocha.
Dynetvis: A system for visualization of dynamic networks. In Proceedings
of the Symposium on Applied Computing, SAC ’17, pp. 187–194. ACM,
New York, NY, USA, 2017. doi: 10.1145/3019612.3019686

[37] J. Lukasczyk, G. Aldrich, M. Steptoe, G. Favelier, C. Gueunet, J. Tierny,
R. Maciejewski, B. Hamann, and H. Leitte. Viscous fingering: A
topological visual analytic approach. Applied Mechanics and Materials,
869:9–19, 2017.

[38] J. Lukasczyk, C. Garth, G. H. Weber, T. Biedert, R. Maciejewski, and
H. Leitte. Dynamic nested tracking graphs. IEEE Trans. Visual Comput.
Graphics, 26(1):249–258, 2020. doi: 10.1109/TVCG.2019.2934368

[39] J. Lukasczyk, G. Weber, R. Maciejewski, C. Garth, and H. Leitte. Nested
tracking graphs. Comput. Graphics Forum, 36(3):12–22, 2017. doi: 10.
1111/cgf.13164

[40] R. Mastrandrea, J. Fournet, and A. Barrat. Contact patterns in a high
school: A comparison between data collected using wearable sensors,
contact diaries and friendship surveys. PLOS ONE, 10(9):1–26, 09 2015.
doi: 10.1371/journal.pone.0136497

[41] A. Myers, C. Joslyn, B. Kay, E. Purvine, G. Roek, and M. Shapiro.
Topological analysis of temporal hypergraphs. In 18th WAW, pp. 127–146.
Springer, 2023.

[42] A. Myers, D. Muñoz, F. A. Khasawneh, and E. Munch. Temporal network
analysis using zigzag persistence. EPJ Data Science, 12(1):1–19, 2023.

[43] P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of
submanifolds with high confidence from random samples. Discrete
Comput. Geom., 39(1-3):419–441, 2008.

[44] G. K. Orman, N. Türe, S. Balcisoy, and H. A. Boz. Finding proper time
intervals for dynamic network extraction. J. Stat. Mech: Theory Exp.,
2021(3):033414, 2021.

[45] S. Paris and F. Durand. A topological approach to hierarchical segmenta-
tion using mean shift. In 2007 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1–8. IEEE, 2007.

[46] G. Plonka and Y. Zheng. Relation between total variation and persistence
distance and its application in signal processing. Adv. Comput. Math.,
42:651–674, 2016.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[47] J. R. Ponciano, C. D. Linhares, E. R. Faria, and B. A. Travençolo. An
online and nonuniform timeslicing method for network visualisation.
Comput. Graphics, 97:170–182, 2021. doi: 10.1016/j.cag.2021.04.006

[48] J. R. Ponciano, C. D. G. Linhares, S. L. Melo, L. V. Lima, and B. A. N.
Travençolo. Visual analysis of contact patterns in school environments.
Informatics in Educ., 19(3):455–472, 2020. doi: 10.15388/infedu.2020.20

[49] J. R. Ponciano, C. D. G. Linhares, L. E. C. Rocha, E. R. Faria, and B. A. N.
Travençolo. Combining clutter reduction methods for temporal network
visualization. In Proceedings of the 37th ACM/SIGAPP Symposium on
Applied Computing, SAC ’22, p. 1748–1755. Association for Computing
Machinery, New York, NY, USA, 2022. doi: 10.1145/3477314.3507018

[50] J. R. Ponciano, C. D. G. Linhares, L. E. C. Rocha, E. R. Faria, and B. A. N.
Travençolo. A streaming edge sampling method for network visualization.
KAIS, 63(7):1717–1743, 2021. doi: 10.1007/s10115-021-01571-7

[51] B. Rieck, U. Fugacci, J. Lukasczyk, and H. Leitte. Clique community
persistence: A topological visual analysis approach for complex networks.
IEEE Trans. Visual Comput. Graphics, 24(01):822–831, jan 2018. doi: 10.
1109/TVCG.2017.2744321

[52] L. E. C. Rocha, F. Liljeros, and P. Holme. Simulated epidemics in
an empirical spatiotemporal network of 50,185 sexual contacts. PLoS
Comput. Biol., 7(3):e1001109, 03 2011.

[53] L. E. C. Rocha, N. Masuda, and P. Holme. Sampling of temporal
networks: Methods and biases. Phys. Rev. E, 96:052302, Nov 2017.
doi: 10.1103/PhysRevE.96.052302

[54] A. E. Sizemore and D. S. Bassett. Dynamic graph metrics: Tutorial,
toolbox, and tale. NeuroImage, 180:417–427, 2018.

[55] S. Soundarajan, A. Tamersoy, E. B. Khalil, T. Eliassi-Rad, D. H. Chau,
B. Gallagher, and K. Roundy. Generating graph snapshots from streaming
edge data. In WWW’16, pp. 109–110, 2016.

[56] N. Stanley, R. Kwitt, M. Niethammer, and P. J. Mucha. Compressing
networks with super nodes. Sci. Rep., 8(1):10892, Jul 2018.

[57] A. Suh, M. Hajij, B. Wang, C. Scheidegger, and P. Rosen. Persistent
homology guided force-directed graph layouts. IEEE Trans. Visual Comp.
Graph., 26(1):697–707, 2020. doi: 10.1109/TVCG.2019.2934802

[58] R. Sulo, T. Berger-Wolf, and R. Grossman. Meaningful selection of
temporal resolution for dynamic networks. In Proceedings of the Eighth
Workshop on Mining and Learning with Graphs, pp. 127–136, 2010.

[59] S. Uddin, N. Choudhury, S. Farhad, and M. Rahman. The optimal window
size for analysing longitudinal networks. Sci. Rep., 7(1):13389, 2017.

[60] P. Valdivia, P. Buono, C. Plaisant, N. Dufournaud, and J.-D. Fekete. Ana-
lyzing dynamic hypergraphs with parallel aggregated ordered hypergraph
visualization. IEEE Trans. Visual Comput. Graphics, 27(1):1–13, 2021.

[61] S. van den Elzen, D. Holten, J. Blaas, and J. van Wijk. Dynamic network
visualization with extended massive sequence views. IEEE Trans. Visual
Comput. Graphics, 20:1087–1099, 2014.

[62] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Reordering
massive sequence views: Enabling temporal and structural analysis of
dynamic networks. In 2013 IEEE Pacific Visualization Symposium
(PacificVis), pp. 33–40, 2013. doi: 10.1109/PacificVis.2013.6596125

[63] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Reducing
snapshots to points: A visual analytics approach to dynamic network
exploration. IEEE Trans. Visual Comput. Graphics, 22(1):1–10, 2016.
doi: 10.1109/TVCG.2015.2468078

[64] P. Vanhems, A. Barrat, C. Cattuto, J.-F. Pinton, N. Khanafer, C. Régis, B.-a.
Kim, B. Comte, and N. Voirin. Estimating potential infection transmission
routes in hospital wards using wearable proximity sensors. PLoS One,
8:e73970, 2013. doi: 10.1371/journal.pone.0073970

[65] Y. Wang, D. Archambault, H. Haleem, T. Moeller, Y. Wu, and H. Qu.
Nonuniform timeslicing of dynamic graphs based on visual complexity.
In 2019 IEEE Visualization Conference (VIS), pp. 1–5. IEEE, 2019.

[66] W. Widanagamaachchi, C. Christensen, V. Pascucci, and P.-T. Bremer.
Interactive exploration of large-scale time-varying data using dynamic
tracking graphs. In IEEE Symposium on Large Data Analysis and
Visualization (LDAV), pp. 9–17, 2012. doi: 10.1109/LDAV.2012.6378962

[67] P. Wills and F. G. Meyer. Metrics for graph comparison: A practitioner’s
guide. PLOS ONE, 15(2):1–54, 2020. doi: 10.1371/journal.pone.0228728

[68] L. Xie, J. O’Donnell, B. Bach, and J.-D. Fekete. Interactive time-series
of measures for exploring dynamic networks. In Proceedings of the
International Conference on Advanced Visual Interfaces, pp. 1–9, 2020.

[69] V. Yoghourdjian, T. Dwyer, K. Klein, K. Marriott, and M. Wybrow. Graph
thumbnails: Identifying and comparing multiple graphs at a glance. IEEE
Trans. Visual Comput. Graphics, 24(12):3081–3095, dec 2018. doi: 10.
1109/TVCG.2018.2790961

[70] Y. Zhao, Y. She, W. Chen, Y. Lu, J. Xia, W. Chen, J. Liu, and F. Zhou. EOD
edge sampling for visualizing dynamic network via massive sequence
view. IEEE Access, 6:53006–53018, 2018.

Raphaël Tinarrage holds a PhD in pure and
applied mathematics from the Université Paris-
Saclay (2020). He passed the agrégation (na-
tional teaching qualification) while studying at
the École normale supérieure Paris-Saclay. He
is currently a research fellow at the Institute of
Science and Technology Austria, and previously
at the Fundação Getúlio Vargas EMAp. His work
focuses on Topological Data Analysis, in its theo-
retical developments and practical applications.

Jean R. Ponciano is an Assistant Professor with
the Mathematics and Computer Science Institute
- University of São Paulo, Brazil. His research
interests include information visualization, visual
analytics, network science, and data streams.
He frequently serves as a program committee
member for relevant conferences, including IEEE
Vis, EuroVis, and ASONAM, and as an exter-
nal reviewer for other relevant venues, such as
IEEE TVCG, Comp. Graph. Forum, Computers
& Graphics.

Claudio D. G. Linhares is a Senior Lecturer
at Linnaeus University, at the Department of
Computer Science and Media Technology Faculty
of Technology, in Växjö, Sweden. My research
interests include information visualization, net-
work visualization, human-computer interaction,
visual analytics, and human-in-the-loop AI, with
applications especially in forestry and healthcare.

Agma J. M. Traina received the BSc and MSc
degrees in Computer Science and PhD in Com-
putational Applied Physics all from the University
of São Paulo, Brazil in 1983, 1987 and 1991
respectively. She also spent a sabbatical leave
as a visiting researcher at the Computer Science
Department of the Carnegie Mellon University
(1998-2000) working on Multimedia Databases.
She is a full professor with the Mathematics and
Computer Science Institute - University of São
Paulo, since 2008. Her research interests include

indexing and retrieval of complex data by content, similarity queries, data
visualization, visual data mining, as well as image and video processing.
Agma has been working in the integration of the results of her research
lines with applications to medicine, aimed at the development of applied
computational systems. She is a member of the Brazilian Computer
Society, ACM and IEEE Computer Society.

Jorge Poco is an Associate Professor at
the School of Applied Mathematics, Fundação
Getúlio Vargas (FGV), Brazil. He earned his Ph.D.
in Computer Science from New York University,
an M.Sc. in Computer Science from the University
of São Paulo, Brazil. His research focuses on
data visualization, visual analytics, machine learn-
ing, and data science. He has actively contributed
to program committees for IEEE SciVis, IEEE
InfoVis, VAST, and EuroVis.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3528197

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Background and Related Work
	Temporal graphs and timeslicing
	Persistent Homology applied to Graphs
	Zigzag persistent homology

	Design Tasks and Workflow
	Temporal resolution suggestion
	Description of the method
	Timestamps shifts and structural changes

	Visualization
	Colored barcode layout
	Design decisions
	System prototype

	Datasets
	Usage Scenario
	Exploring the Primary School network
	Comparison with LargeNetVis

	User Study
	Participants and Experiment setup
	Questionnaire
	Results

	Analysis of the suggested resolutions
	Visual justification with colored barcodes
	Comparison with other features

	Discussion and Limitations
	Conclusion
	References
	Biographies
	Raphaël Tinarrage
	Jean R. Ponciano
	Claudio D. G. Linhares
	Agma J. M. Traina
	Jorge Poco

