Exploring Traffic Dynamics in Urban Environments Using Vector-Valued Functions

Jorge Poco, **Harish Doraiswamy**, Huy T. Vo, Joao Comba, Juliana Freire, Cláudio T. Silva

Traffic in a City

- Key component of an urban ecosystem
- Traffic patterns can help
 - Plan infrastructure development
 - Form policies
- Improve quality of life in a city!
- Urban planners need to understand traffic patterns

Understanding Traffic

- Scalar-based questions
 - Speed
 - Density
- Mobility-based questions
 - Slow moving traffic
 - Free flow of traffic
 - Direction of traffic movement

[https://www.google.com/maps]

[http://www.tibco.com/blog/wp-content/uploads/2013/07/traffic.jpg]

Challenges

- Acquiring traffic information
- Visualizing traffic flow patterns

[http://newyorknotebook.net/006-on-hailings-cabs-and-other/]

Challenges

- Acquiring traffic information
- Visualizing traffic flow patterns

[http://www.traffic-tech.com/]

[http://newyorknotebook.net/006-on-hailings-cabs-and-other/]

Traffic Information

Challenges: Traffic Source

- Different times
- Over all streets
- Spread cameras, E-Zpass real
 - coverage is very sparse
- Existing map tools
 - Along main roads
 - No historical data
- Can we obtain complete data?

[http://newyorknotebook.net/006-on-hailings-cabs-and-other/]

Idea: Taxis as Sensors

- ~13,000 taxis operate in Manhattan
- 500,000 trips per day
- Taxi data
 - Start and end positions of every trip
 - Trip distance and duration
- How to obtain the path taken?
 - Efficient

[http://newyorknotebook.net/006-on-hailings-cabs-and-other/]

Taxis as Sensors

- Two steps to derive traffic information
 - Identify plausible routes of taxis
 - Use this information to derive traffic speeds over the city
- Validated with real data

Visualizing Traffic Flow

Challenges: Visualizing Traffic Flow

- Existing work
 - Focuses on object movement

[Andrienko et al. Information Visualization 2013]

Density-based visualizations

[Willems et al. CGF 2009][Scheepens et al. TVCG 2011]

Visualizations to explore attributes

[Tominski et al. TVCG 2012][Wang et al. TVCG 2013][Ferreira et al. TVCG 2013]

Is there a way visualize the flow of traffic?

[Andrienko et al. IV 2013]

[Willems et al. CGF 2009]

[Ferreira et al. TVCG 2013]

Traffic Function

Vector-valued function

Visualizing Traffic Flow

Flow lines from vector fields

Time Instant

Over Time

Visualizing Traffic Flow

- Challenge
 - Direction of flow is not unique
- Direction based on application
 - Lowest speed
 - Highest speed
 - Probable taxi movement

Traffic Dynamics in Manhattan

High Speed Traffic Flow

- Path lines
 - 1 minute
- Direction
 - highest speed
- Seed points
 - Road intersections
 - Uniformly at random

Red lines indicate northward direction

Blue lines indicate southward direction

High Speed Traffic Flow

Red lines indicate northward direction
Blue lines indicate southward direction
Harish Doraiswamy

Taxi Flow

- Path lines
 - 20 minutes
- Seed points
 - Midtown Manhattan
- Direction
 - Density of taxis

Traffic Bottlenecks

- Direction
 - Lowest speed
- Streamlines
 - Study bottlenecks at different time instants

Traffic Bottlenecks

Simulating Road Blocks

Conclusions

- Taxi as sensors to obtain traffic information
 - Closest path model
 - Efficient
 - Validated with real data
- Adapt visualization techniques from vector fields
 - Particle advection
 - Global techniques

Future Work

- Raised interesting questions
 - What do the large orbits mean?
 - Streak lines
- Try vector field topology to automatically identify patterns

SciVis techniques can provide insightful views into domains traditionally not part of it

Acknowledgements

- NYC TLC and DoT
- This work was supported in part by
 - Google Faculty Award
 - IBM Faculty Award
 - Moore-Sloan Data Science Environment at NYU
 - NYU School of Engineering
 - NYU's Center for Urban Science and Progress (CUSP)
 - AT&T
 - NSF award CNS-1229185
 - CNPq Processes 476685/2012-5 and 309483/2011-5

Exploring Traffic Dynamics in Urban Environments Using Vector-Valued Functions

Thank You!

http://vgc.poly.edu/projects/TrafficFlow jpocom@nyu.edu harishd@nyu.edu

Estimate Traffic Information

Identify plausible routes of taxis

Non-linear optimization techniques

[Zhan et al. Transport. Res. C-Emer. 2013]

Cannot handle large data

Estimate Traffic Information

Identify plausible routes of taxis

Closest Path Algorithm

- Intuition
 - The actual route comprises of segments
 - Each segment is the shortest path between two points
- Given number of way-points n
 - Identify paths for all possible n-set of way-points
- n = 1
 - 82.8% accuracy
 - Linear time (after pre-processing)

Estimate Traffic Information

- Each path
 - Assign speed to every segment
 - Assign weight inversely proportional to closeness to actual trip distance
- Each road segment

$$\bar{s}_i = \frac{\sum_{j=1}^n s_i^j \times w_i^j}{\sum_{j=1}^n w_i^j} \qquad \sigma_i^2 = \frac{\sum_{j=1}^n (s_i^j - \overline{s_i})^2 \times w_i^j}{\frac{n-1}{n} \sum_{j=1}^n w_i^j}$$

Model Validation

k-shortest paths

Validation

Trip Lengths in Manhattan

